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This report presents the status and reviews some of the current activities in the develop- 
ment of advanced one-point turbulence closure models with special reference to the 
modeling and computation of turbulent wall flows. It gives a brief retrospective of the 
development of the one-point closure models and highlights major achievements. It also 
recalls some of the pertinent issues that are still open and that pose challenges to modelers. 
Some pertaining deficiencies, which have been obvious since the very beginning of the 
development and are still present, are discussed, together with some marked differences 
in the views of various groups of modelers. 

The review is limited to conventional one-point two-equation Eddy Viscosity Models 
(EVMs) and Differential Second-Moment (Re-stress) Models (DSMs). It does not deal 
with any spectral approach, nor partial field models, such as subgrid modeling or similar 
methods used within the framework of other simulation techniques. Some new ap- 
proaches, such as the Renormalization group theory (RNG), are mentioned briefly and 
only insofar as they may inspire modifications and improvements of conventional models. 

The report deals with general aspects of modeling complex turbulent flows, but is 
restricted to incompressible (or mildly compressible) fluid, with particular focus on 
computation of wall flows. 
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1. I n t r o d u c t i o n  

Ever since the first successes, just a quarter of a century ago, 
in reproducing computationally the experimental data on field 
properties in a wide range of turbulent flows with a single set 
of modeled equations and empirical coefficients, one-point 
closure models have rapidly gained in popularity. Turbulence 
modeling for computational fluid dynamics emerged as a 
distinct discipline and, in conjunction with suitable numerical 
methods, became the most widely employed predictive tools in 
fluid mechanics and in heat and mass transfer. Numerous 
researchers and users all over the world contributed to the 
testing, development, and refinement of these tools. 

In spite of a wide recognition of the general achievements in 
mathematical modeling of turbulence over the past 20 years, 
there are still some physical effects the modeling of which has 
not yet resulted in a comparable feeling of satisfaction in the 
turbulence research community. Streamline curvature and 
extra strain rate, unsteadiness and periodicity, viscosity and 
wall-proximity, three-dimensionality, flow separation and 
reversal, buoyancy and rotation, etc., are perhaps the most 
prominent examples. These effects are often present in many 
turbulent flows. Yet their modeling still poses difficulties, not 
only because of an insufficient understanding of the physics, 
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but also because of an apparent need to employ mathematical 
formulations and numerical schemes of greater complexity than 
had been hitherto used to model simpler, well-behaved flows. 
"Carious attempts to incorporate some or all of the 
above-mentioned effects and to devise a general turbulence 
model have produced only partial successes, usually at the 
expense of physical clarity and computing economy. Such a 
discouraging outcome has caused some of the proposed 
concepts to become obsolete, but the necessity for proper 
accounting of these effects prompts a continuation of the search 
for better models. Some recent developments in experimental 
techniques, in particular the laser Doppler anemometry, 
particle-imaging technique, and holography, produce more and 
more new experimental evidence on some turbulence 
interactions that has not been possible to measure accurately 
hitherto. A particularly fresh impetus came with advances in 
direct numerical simulation of turbulence, which offers new 
possibilities of obtaining information and of verifying the 
hypotheses on some turbulence properties that are still 
inaccessible by the presently available experimental techniques. 

While efforts at improving and refining models are 
continuing, in particular at a few reputed schools, numerous 
engineers all over the world have succumbed to the appeal of 
an attractive blend of simplicity and acceptable predictive 
ability of popular models, such as k-e, and have employed them 
for the computation and predictions of turbulent flows and 
associated transport phenomena in very complex geometries. 
Some of these results indeed look very impressive, with 
predicted details of velocity field, turbulence properties and 
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other variables that were inconceivable only a few years ago. 
However, Lumley's (1978) warning, issued a decade and a half 
ago, that the application of a technique in situations in which 
data do not exist "must be regarded as a dangerous practice 
since the limitations of the technique are not known with any 
precision," is still as valid as ever. Although we now know 
much more, active researchers feel that a dose of caution is still 
often advisable and that not all of the computed results are to 
be fully trusted. A simple turbulence model may be incapable 
of capturing certain interactions when applied to what 
Reynolds (1976) called an "exotic" flow geometry, simply 
because such interactions may have been unimportant in 
previously considered flows. Inadequate specification of 
boundary conditions, and/or numerical defects of which the 
user may be unaware, may yield very misleading results and 
the subsequent abuse of these findings. A minimum of both 
modeling and computing expertise is a prerequisite for 
trustworthy results. 

However, in spite of all these cautionary notes, prediction 
results can often serve engineering purposes, simply because 
the uncertainties in modeling other phenomena involved may 
be much higher than those implied in the model of flow 
hydrodynamics. Or, as Bradshaw (1987) wrote in his review of 
secondary flows, "the best modern methods allow almost all 
flows to be calculated to higher accuracy than the 
best-informed guess, which means that the methods are 
genuinely useful even if they cannot replace experiments." 

2. A few historical recollections 

The topic of turbulence modeling and computation has been 
very popular since its first appearance, and a number of authors 
have taken up the challenge in the past to write review articles 
(e.g., Bradshaw 1972; Mellor and Herring 1973; Reynolds 1976; 
Lumley 1978; Lakshminarayana 1986; Nallasamy 1987; Rodi 
1982, 1986, 1988; Launder 1990; So et al. 1991; Speziale 1991; 
and others). However, over the past few years a number of new 
publications have reported progress in refining turbulence 
models, inspired mainly by the results of direct numerical 
simulation. Some new approaches based on more rigorous 
mathematical derivation, such as the Renormalization group 
theory (RNG) (e.g., Yakhot and Orszag 1986; Yakhot et al. 
1992; Yakhot and Smith 1992) or the Elliptic relaxation 
method of Durbin (1991, 1993), claim major breakthroughs in 
turbulence simulation. These new developments, after a longer 
period of stagnation, came toward the end of 1993, which 
marked a quarter of a century after the (we may say historic) 
1968 AFOSR-IFP Stanford Conference on Computation of 
Turbulent Boundary Layers. In the words of J. Lumley (1978), 
this conference "was the birth of the technique which has 
become known as second order modelling . . . .  " 

Of course, the 1968 Stanford meeting was not the beginning, 
but only the turning point that legitimized the superiority of 
the mean-field approach to integral methods and stimulated 
their further development. As is well known, the work started 
much earlier with Koimogorov (1941), Chou (1945), Rotta 
(1951), and Davidov (1959, 1961), whose ideas materialized in 
practical computation only after the advent of high-speed 
computers. Already in the year of the Stanford meeting, frantic 
research was going on in parallel at a few places in the world. 
At the Los Alamos Laboratory, Harlow and Nakayama (1968) 
and Daly and Harlow (1970) were working on the development 
of a "generalized transport theory of anisotropic turbulence" 
employing the partial differential equations for turbulent 
stresses and energy decay rate following earlier suggestions of 
Chou (1945). Donaldson et al. (1972) pursued invariant 
modeling to close the Re-stress equations by employing a 
prescribed length scale. At the Imperial College, the successful 
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development of the Patankar-Spalding (1968) numerical code 
for solving the partial differential equations prompted a rapid 
development of turbulence models. Ng, Rodi, and Spalding (see, 
e.g., Rodi and Spalding 1970) pursued the k-kL type of model, 
while Hanjali~, Jones, and Launder (1970) preferred to 
investigate the two- and three-equation models with energy 
dissipation rate e as the scale parameter, which even at that 
time showed some practical advantages that became generally 
recognized some years later. A number of parabolic wall and 
free flows were solved with a single set of equations and 
empirical coefficients that have changed little since the work of 
Hanjali6 and Launder (1972). The k-e model was already 
extended to be applicable to low-Re-number flows (Jones and 
Launder 1972). 

However, apart from some of the latest developments such 
as the RNG theory, which must await further scrutiny before 
they are widely accepted, nothing substantial has really 
changed from those original formulations of two-equation 
models. The intensive research efforts over the past 
two-and-a-half decades have, however, expanded the frontiers 
of our knowledge and resulted in numerous proposals for 
models upgrading and improvements. A rich experience on the 
extent and limitations of predictive abilities of these and 
higher-order models has been accumulated by the enlarged 
turbulence-modeling community. The 1980-81 AFOSR- 
HTTM Conference on Complex Turbulent Flows, envisaged 
at that time as a "decennary grand festival of achievements in 
turbulence modelling and computation," attracted about 40 
research teams who tested their models against a number out 
of 50 predefined test cases for which independent experimental 
data were supplied. Most of the models demonstrated at that 
time a high potential and a scope of applicability, with 
prospects of further improvements and wider use in 
computation of complex turbulent flows of industrial and 
environmental relevance. The end of the last decade called for 
a new review of the state of the art, and an international project 
run from Stanford was launched, "Collaborative testing of 
turbulence models" 1990-1992 (Bradshaw et al. 1991), which 
was envisaged to use the modern methods of postal 
communication instead of personal attendance at a conference. 
New, challenging test cases were proposed, most of them 
substantiated this time by results of direct numerical 
simulation. Partly due to lack of live communication and partly 
due to saturation and a slowdown in the research, this project 
did not bring many novelties: most participants presented data 
with the same or very similar rudimentary models used a 
decade earlier. In spite of this, the consensus among the 
modelers, using even the same or very similar models, was 
below expectation. The project was a success at least in the 
sense that it emphasized very many deficiencies and weaknesses 
of contemporary turbulence models. Reynolds-stress models 
appeared to have an advantage over two-equation eddy- 
viscosity models, but not by a convincing margin. 

3. Current engineering models 

Three types of turbulence models could be identified as fast 
engineering methods (despite the need to solve partial 
differential equations): 1 

• two-equation eddy-viscosity models (EVMs); 
• the differential Re-stress equation model (DSM) (differential 

second-moment closure); and 
• intermediate (truncated) and "hybrid" models that hier- 

archically fall in between these two and take some 
advantages from each of them: 

- -  Algebraic stress models (ASMs); and 
- -  Incomplete or partial stress models (PSMs) 
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Although the foundations of two-equation models (EVMs) are 
well known, in a search for model refinements it is helpful to 
reiterate the basic assumptions: 

• turbulent stresses are expressed as directly proportional to 
the mean rate of strain; 

• the proportionality coefficient in the stress-strain relation- 
ship--the eddy viscosity--is expressed in terms of two 
parameters, which can be grouped so as to represent a 
characteristic turbulence scale; 

• the two parameters are obtained from modeled differential 
transport equations, which are based upon (or, at least, have 
some roots in) the exact transport equations for these 
quantities, which take into account the time, memory, and 
spatial awareness of the local turbulence state; and 

• basic two-equation EVMs presume a linear relationship 
between the turbulent stresses and mean rate of strain and 
treat the eddy viscosity as a scalar property of the flow. 

Two-equation EVMs in their rudimentary forms have a major 
advantage in their simplicity and practical usability. A 
computational advantage (but also a physical deficiency!) is 
the scalar (isotropic) eddy viscosity, which allows the model to 
be incorporated into any existing laminar Navier-Stokes 
computer code. 

The differential Re-stress model (DSM) is regarded as the 
natural and most logical level of modeling within the 
framework of the Reynolds averaging approach, since it 
provides the extra turbulent momentum fluxes from the 
solution of full transport equations, which are derivable from 
the Navier-Stokes equations. In addition to the solution of 
equations for each Re-stress component, it requires a 
length-scale-supplying equation, for which the great majority 
of models employ the dissipation rate equation. In such a form, 
the DSM model still represents the most comprehensive 
description of turbulent flows that can be employed for 
practical computations with the present generation of 
computers. 

In addition to a more faithful description of the turbulence 
dynamics (e.g., both the convection and diffusion are 
accounted for in a differential form), second-moment closure 
models are legitimized by a stricter compliance with the general 
modeling principles on which some modelers particularly insist. 
These principles can be grouped into two classes: the first class 
can be regarded as a mathematical formalism, and it implies 
the dimensional coherence of all terms in equations, 
tensorial-order consistency, and coordinate-frame and mater- 
ial-frame indifference, as well as satisfaction of real- 
izability conditions, limiting properties of two-dimensional 
(2-D) turbulence, etc. The second class of principles is of 
physical nature and is more difficult to quantify. These can be 
defined as principles of physical coherence that postulate, e.g., 
that the turbulence correlations be primarily modeled in terms 
of turbulence parameters that are known to govern directly the 
described interactions, instead of mean-flow or some external 
parameters. The decreasing influence of higher-order moments 
upon the mean-flow properties, confirmed in many flows of 
practical relevance, can be regarded as one of the principles of 
this type. 

As is well known, a more general compliance with these and 
other rules necessarily burdens models with more complex 
mathematical formalism (Mjolsness (1979) proposed no less 
than eight rules, including the principle of super-realizability!), 
which for many practical flow situations may not produce any 
qualitative improvements of predictions. For this reason, there 
is no general consent with respect to the strict obedience of the 
modeling principles. Disobedience causes discomfort to some 
modelers, while others, more technologically oriented, tend to 
sacrifice mathematical puritanism for the sake of practicality. 

The question arises, however, whether compliance with a wider 
set of constraints ensures a higher degree of model universality. 
This does seem to be generally the case, and with further 
advances of computers we may expect more principles of 
invariance and realizability to be implemented in models of all 
levels. 

Hybrid methods should be regarded as a compromise of 
today. In most cases they will be used by knowledgeable 
workers who know enough about the affair to be able to 
estimate to what extent they can prune the full transport 
equations to achieve computational advantages, but still gain 
benefits beyond those offered by the simple two-equation 
models. 

Some weaknesses and shortcomings that have been known 
from the early days of models and have persisted as still 
unresolved will be listed briefly. For two-equation EVMs, these 
are 

• linear (Newtonian) stress-strain relationship through the 
eddy-viscosity model (at least in the rudimentary linear 
models); 

• scalar (isotropic) character of eddy viscosity (insensitivity to 
the orientation of the turbulence structure and its 
transporting and mixing mechanisms); 

• inability to reproduce stress anisotropy and its consequence 
(e.g., prediction of stress-induced secondary motion); 

• scalar character of turbulence scales--insensitivity to eddy 
anisotropy; 

• limitations to define only one time- or length scale of 
turbulence for characterizing all turbulence interactions; 

• failure to account for all physical processes governing the 
behavior of e or other scale-determining quantities by virtue 
of the simplistic form of the basic equation for that variable; 

• inadequate incorporation of viscosity damping effects on 
turbulence structure (low Re-number models); 

• inability to mimic the preferentially oriented and geometry- 
dependent effects of pressure reflection and eddy-flattening 
and squeezing mechanisms due to the proximity of solid- or 
interphase surface; and 

• frequently inadequate treatment of boundary conditions, in 
particular at the solid wall. 

Differential Re-stress models overcome the first three 
deficiencies, but all the others remain to a greater or lesser 
extent. In addition, this class of models involves some further 
uncertainties, such as 

• deficiencies in modeling various terms in uiui-differential 
equations (in particular the pressure redistribution, but also 
the turbulent diffusion and stress dissipation rates). 

The modeling of various turbulence interactions, represented 
by different terms in transport equations, requires a 
specification of characteristic turbulence time-, length- and 
velocity scales. Of the two turbulence properties used to define 
characteristic scales, the kinetic energy of turbulent fluctuations 
k = u--~./2 has been employed without exception, since it has 
proved to be the best defined and most readily obtainable 
turbulence parameter. As the second turbulence property, the 
most popular has been the homogeneous part of the rate of 
energy dissipation e = v(tSuJ&xj) 2, which in combination with 
k produces the turbulence time- and length scale. Other 
variables have also been persistently used by other researchers, 
such as a length scale L and the product (kL) (e.g., Rotta 1951; 
Mellor and Herring 1973), or &2--the mean square of the 
fluctuating vortici ty--or its rms, if9 (09 k = EokrUJrX~) (e.g., 
Wilcox 1988; Wilcox and Traci 1976; Wilson and Rubesin 
1980). The latter variable can be interpreted as the 
characteristic frequency of the large eddy structure, or as the 
specific dissipation rate per unit of kinetic energy & = e/k. More 
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recently, the turbulence time scale T (reciprocal of the eddy 
frequency), which reduces to the ratio k/e in the single-point 
models, was briefly popular and looked like a promising new 
scale-supplying variable. Like the length scale, it appeals more 
than other variables because of its plausible physical meaning, 
and also its plausible behavior in many flow regions, 
particularly in the wall vicinity. However, the verifications 
reported so far have not brought many improvements nor 
specific advantages in comparison with existing variables, 
particularly e (e.g., Speziale et al. 1992; Thangam et al. 1992). 
The major deficiency seems to be in the rigidity of the tested 
T-equation, which, being derived from the current k and e 
equations for high Re-number flows, contains a constant sink 
term. 

The above-mentioned (and other) scale-supplying variables 
can be expressed as a product kme ". Irrespective of the choice 
of m and n, a transport equation for the scale-supplying 
variable can easily be derived empirically (although an origin 
can be traced to the Navier-Stokes equations) that has the 
same conservation form with source and transport terms. The 
choice is more a matter of taste, since all variables and their 
equations are derivable one from another, differing only in the 
way the diffusion terms are modeled. The greater popularity of 
the dissipation equation can be attributed to the practical 
advantage of its simpler form as compared with other 
equations. It should be noted that in most cases, other than 
when using e, it appears necessary to retain a cross-diffusion 
term like (~k/~x~X~e/~xj), which is not of diffusive character and 
should be treated as a source. 

The t-equation has a form of the simplest transport 
equations, with terms representing the basic processes that 
govern its dynamics. Despite its striking simplicity, the basic 
equation for the turbulence energy dissipation has proved to 
possess a surprising level of generality, which explains its 
popularity as the length-scale-supplying equation. Extensive 
tests have revealed, however, a number of shortcomings that 
appear particularly in flows with a pronounced nonequilibrium 
of basic turbulence mechanisms. 

3.1. Estimate of  performances 

The earliest comprehensive survey of the performance of 
various models can be found in the Proceedings of the 1980--81 
AFOSR-HTTM Stanford Conference on Complex Turbulent 
Flows (Kline et al. 1981). More recently, several up-to-date 
reviews have appeared covering more specific aspects: 
Lakshminarayana (1986) surveyed practices of modeling the 
curvature, rotation, and three-dimensionality, Cousteix (1986) 
reviewed modeling and computation of three-dimensional and 
unsteady boundary layers, Bradshaw (1987) gave an interesting 
account of current models' ability to predict secondary flows 
of various origins, while Nallasamy (1987) gave a review of the 
application of turbulence models to the prediction of internal 
flows. A general report on the EUROMECH 180 Colloquium 
on turbulence modeling for incompressible flows by Rodi (1986) 
gave a good review of the state of the art as seen 
by the Colloquium participants. Other interesting readings 
include more recent general reviews by Rodi (1988), Launder 
(1990), So et al. (1991), Speziale (1991), and others. 

Although the comments and conclusions in these reviews 
reflect personal convictions and some of them may not hold 
generally, most of them are shared overwhelmingly by the 
majority of active members of the turbulence-modeling 
community, since these conclusions derive from the experience 
of a vast number of current users. It would be beyond the scope 
of the present review's objective and an unnecessary repetition 
to summarize conclusions, but some may be recalled as a 
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reminder for the forthcoming discussion (limited to incompres- 
sible flows). 

• Two-equation eddy viscosity models (El~Ms) in their basic 
form yield satisfactory predictions of 2-D thin shear flows 
(attached boundary layers and 2-D flows in conduits, with 
low-to-moderate pressure gradients, wall suction and 
blowing, free flows), as well as some recirculating flows that 
are dominated by pressure gradients, and even some flows 
with streamline curvature and body force when these effects 
are weak. 

• Two-dimensional flows with separation and stronger 
curvature, rotation, buoyancy and other specific effects can 
be predicted satisfactorily with two-equation models if 
adequate modifications are made. The simplest, though not 
always effective, way is to make the coefficient in the eddy 
viscosity, C,, a function of the P/e ratio as well as of extra 
effects (preferably derived from a Reynolds-stress model and 
expressed in forms of the nondimensional similarity 
parameters: the Richardson, Rossby, and Rayleigh numbers). 
A still sounder approach implies the inclusion of additional 
terms into the dissipation equation, preferably based on 
the exact terms in the original equations. However, most of 
the modifications proved to be problem dependent and their 
effects restricted only to the class of flows for which they 
were designed. 

• Algebraic stress models (ASMs) that are derived from parent 
differential stress equations have been reported to yield 
better predictions of 2-D flows with secondary motion and 
in some flows with rotation and curvature, provided that 
these flows are not far from equilibrium, i.e., in absence of 
rapid change of the mean rate of strain and if the stress 
transport is of minor importance. Although the ASMs by 
their origin are supposed to capture better flow physics, e.g., 
the stress anisotropy, streamline curvatures, and body forces, 
their only indisputable merit in comparison with the EVMs 
is their ability to reproduce some kind of secondary motion 
in noncircular ducts and corners. 

• The differential Re-stress models (DSMs) yield superior 
predictions of 2-D nonequilibrium flows (sudden and strong 
streamwise variations of boundary and external conditions, 
in particular those imposing the abrupt changes of strain 
rate). They also perform better in unsteady and periodic 
flows and everywhere where the response of turbulence field 
exhibits a lag and a consequent hysteresis as compared with 
the variation of mean flow properties. DSMs account 
automatically for the effects of stress anisotropy (e.g., 
stress-induced secondary flows), streamline curvature, and 
flow rotation (formally also for three-dimensionality) and 
perform usually better where these effects are important. Of 
course, shortcomings in the scale-determining equation, 
which becomes particularly important in pressure-domi- 
nated flows, or inadequate treatment of boundary conditions, 
like the use of wall functions, often annul or diminish the 
inherent superiority of the DSMs as compared with EVMs, 
leading to a wrong judgment. 

An increased interest in the application of turbulence models 
to the calculation of more complex 2-D and, particularly, 
three-dimensional (3-D) flows over the past few years, revealed 
additional shortcomings of the present models at all levels. For 
example, Craft and Launder (1991) found that the popular 
model of the wall reflection on the stress redistribution due to 
the pressure reflection, designed originally for wall-parallel 
flows, produces in the stagnation region of a jet impinging on 
a surface an opposite effect from that detected by experiments. 
Bradshaw (1987) argued that none of the models in their 
present forms can fully capture the significant changes in 
turbulence structure imposed by even mild three-dimensionali- 

Int. J. Heat and Fluid Flow, Vol. 15, No. 3, June 1994 181 



Advanced turbulence closure methods." K. Hanjali~ 

ties. Indeed, the physical understanding of the effects of strong 
skew-induced vorticity, embedded vortices, and even stress- 
induced vortices upon the turbulence structure is regarded as 
still insufficient (partly due to the lack of experimental data) to 
suggest plausible model extensions (e.g., the influence on the 
pressure-redistributing process). Some recent predictions with 
standard models show an interesting outcome (e.g., Liandrat 
et al. 1987, Figure 4). Schwarz and Bradshaw (1992) analyzed 
several models of turbulent diffusion and of pressure strain 
terms on the basis of experimental data in a 3-D boundary 
layer in a curved channel and concluded that even the 
basic Re-stress model can yield plausible predictions in some 
simple 3-D flows. These cases are, however, more exceptions 
than rules, and reliable solutions of complex 3-D flows, 
particularly those with flow separation, still remain a major 
task and an exciting challenge. Major weaknesses of models at 
all levels are still to be discovered. Certain facts, though, are 
already more than obvious: basic EVMs with isotropic eddy 
viscosity are totally inadequate for 3-D flows, as illustrated in 
Figures 1 and 2, where the eddy viscosities for two directions 
are presented for two relatively simple 3-D flows. 

Computationally, of course, two-equation models offer 
frequently decisive advantages over the DSMs models. Almost 
the same could be claimed for the ASMs models, provided 
simpler geometries are considered. However, these models are 
often shown to pose numerical instabilities or other kinds of 
computational inconveniences, and the question arises whether 
the direct use of full or pruned differential Re-stress models 
would be a sounder approach in general, provided that 
adequate computing facilities are available. Also, for irregular 
flow domains, where the use of nonorthogonal coordinate 
systems is required, and for 3-D flows, the ASMs expressions 
become cumbersome and their advantages over the DSMs 
models diminish. 

The above are more general statements with which some 
meticulous modelers would not agree, since there is evidence 
of many yet unresolved paradoxes that conflict with the above 
conclusions--for example, the unsatisfactory predictions of the 
rate of spread of round jets, the inability to predict the weakly 
swirling jet (contrary to the case of the strongly swirling jet, 
which can sometimes be satisfactorily predicted even by the 
standard k-e model), etc. 

Controversies arise sometimes from uncertainties and 
inconsistencies in the definition of inflow turbulence quantities 
and in the treatment of boundary conditions (whether wall 
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Figure 3 Axial (left) and radial (right) velocities around a poppet 
valve: (a) 1 O-ram valve lift; (b) 6-mm valve lift (Lilek et al. 1991 ) 

functions or a straight-to-the-wall integration is applied), as 
well as from insufficient accuracy of the applied numerical 
schemes; all these, as well as insufficient testing of the model 
with varying boundary conditions, may obscure the real 
performances of the turbulence models and, hence, lead to 
misjudgments. An example of this kind is shown in 
Figure 3 (Lilek et al. 1991), where the k-~ solutions of the flow 
around a poppet valve for two valve openings are compared 
with measurements. Whereas for a 10-mm valve lift, both the 
axial and radial velocities are in good agreement with 
experiments at all considered cross sections (Figure 3a), the 
solutions for a 6-mm valve lift depart substantially from the 
measurements. 

Figures 4 to 7 illustrate by way of a few selected examples 
the performances of the basic Re-stress models in several simple 
flows with some specific features. For comparison, Figures 5 
to 7 show also the k-E solutions, which are visibly inferior. 
More illustrations in support of the DSM, particularly in flows 
with extra strain rates, can be found elsewhere (e.g., Launder 
1990; Leschziner 1989). Needless to say, numerous examples 
can also be found in the literature where the DSM yields no 
decisive improvement in comparison with EVMs. 

Figure 5 compares the DSM computations and measure- 
ments of some properties of a turbulent boundary layer 
subjected to periodic disturbances (Hanjali6 and StoOl6 1985). 
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A very good agreement between the measured and computed 
phase-averaged velocity profiles at different time instants is 
achieved (Figure 4a). Moreover, Figure 4b illustrates the 
capability of DSM to reproduce well the dynamics of the 
response of the turbulence stress field. Simple models like the 
k-e can also reproduce a time lag of the turbulence field behind 
the mean flow variation (through the dynamics of k and e), but 
not a fine distinction in the hysteresis of the stress anisotropy 
at various flow depths, as does the Re-stress model. Figure 5 
compares the performances of the EVM and DSM in 
computing the turbulent boundary layer with imbedded 
longitudinal vortices (Liandrat et al. 1987). Because the stress 
anisotropy plays a dominant role in governing secondary 
motions like the longitudinal vortices, even a simple DSM 
shows notably more realistic predictions than EVMs. 

Figure 6 presents a comparison between the computed 
(standard k-e and DSM) and measured pressure distribution 
along the upper and bottom wall in a channel with a 
surface-mounted 2-D obstacle (Obi 1991). Figure 7 illustrates 
a notable superiority of DSM predictions, in comparison with 
EVMs, of the flow field and centerline velocity development in 
the near-wake of a disc with a central jet, though none of the 
models reproduced well the turbulent stress field, particularly 
near the stagnation region (Figure 7d) (Durao et al. 1993). 

3.1.1. Some remarks on model ing wa l l -p rox imi ty  
and viscosity effects.  The influences of viscosity and wall 
proximity upon the turbulent motion are very different by 
nature, yet these effects have in the past been frequently 
modeled jointly, because they both manifest themselves in 
turbulence damping. However, as is well known, if the 
turbulence Re number is small enough, viscosity affects all 
turbulent interactions, causes a departure from local isotropy 
(upon which some useful modeling principles rest), and 
promotes a consequent influence of the mean strain field upon 
the fine-scale turbulence. In contrast, a solid wall or a phase 
interface flattens the turbulent structure and imposes a selective 
damping, primarily of the normal-to-the-wall fluctuations, 
causing the turbulence to approach a 2-D state. Furthermore, 
the wall reflects the pressure pulsations, affecting further the 
stress redistribution process in the region that extends well into 
the turbulent flow, while the influence of viscosity upon the Re 
stresses at high Re-number flows remains restricted to the 
viscous sublayer, and even here does not seem to be very strong. 

The simple two-equation models cannot differentiate these 
effects. Yet the demand for accurate computations of a large 
number of practically important flows, bounded by walls 
and/or phase interfaces, has prompted the appearance of many 
proposals for treating the near-wall region. The practice in the 
past 15 years has meandered between the computationally 
more economical wall-function bridging and a more elaborate 
straight-to-the-wall integration. The latter approach has relied 
in most cases on the introduction of a number of damping 
functions in terms of turbulence Reynolds number and wall 
distance, by means of which their effects on the various terms 
in the modeled transport equations are accounted for. A review 
by Patel et al. (1985) has shown that the two-equation models 
have invariably been accommodated by functions that were 
made to depend purely upon viscosity. Such an ill-founded 
practice obscures the separate effects of viscosity and wall 
proximity and results in poor predictions of flow regions 
where these effects take different relative magnitudes than in 
simple wall flows. A more consistent approach requires each 
of the effects to be modeled separately, with coefficients and 
functions tuned on the basis of experimental data obtained in 
flows where each effect can be isolated. An illustrative example 
is the transition from the initial to the final period of decay of 
isotropic turbulence, which enables a coefficient in the 

dissipation equation to be determined purely on the basis of 
the Re-number effect. Another example is the wall damping of 
the stress components in the near-wall region outside the 
viscosity-affected zone. An illustration of how to account 
separately for these two effects has been shown in the work of 
Hanjali6 (1989), where the fo function (used commonly 
to damp the eddy viscosity in the sublayer region) has been 
decomposed into two parts, i.e., f~ = f'~fw, where f ' ,  represents 
the effect of the low-turbulence Re number, while f ,  represents 
the wall damping effect, assumed to be represented by the ratio 
of u22/k. The resulting expression shows a very similar behavior 
to the "experimental" function of Patel et al. (1985) generated 
from a collection of measured data. 

Of course, because of high anisotropy of turbulence in the 
near-wall region, the Reynolds stress model (or at least the 
ASM), which allows computation of each stress component, 
has much better prospects for simulating wall proximity effects. 
Hanjali6 and Launder (1976) differentiated to some extent the 
influences of two mentioned effects in their low-Re-number 
stress model, but departed from some of the adopted principles 
after they switched to a simpler three-equation model that was 
subsequently tested to yield satisfactory predictions of several 
classes of 2-D thin shear flows. Because of prohibitive 
computational demand, the performance of this and other 
full-stress, low-Re-number models were never thoroughly 
explored in more complex flows, for which most computors 
preferred to employ wall functions. More recently, the 
appearance of DNS data inspired several groups to re-examine 
and to propose new variants of the low-Re-number 
modifications (e.g., Launder and Shima 1989; Lai and So 1990; 
Launder and Tselepidakis 1991). 

There has been a marked trend recently to abandon wall 
functions and to revert again to a more reliable integration 
straight to the wall even by employing locally only very simple 
mixing-length-type models (in spite of the well-known fact that 
this simple model neglects the turbulent transport by secondary 
motion, noticed to persist even in the very close vicinity of the 
walls). The PSL (Parabolic Sub-Layer) approach of Iacovides 
and Launder (1984a, 1984b) seemed at first to offer a possibility 
for employing higher-order turbulence models in the near-wall 
region with a substantial reduction of computation time, but 
was found later to lead to serious errors if applied to flows 
where pressure gradients normal to the flow are large (as 
reported, e.g., by Choi, Iacovides, and Launder 1989), in the 
corners of the square-sectioned curved channel). 

Some fresh developments aimed at replacing the outmoded 
approaches of the 1970s were proposed by several groups in 
the last few years. By noting that the above-mentioned 
experimental f ,  function of Patel et al. (1985), multiplied by 
0.35, follows closely the variations of u2/k through the viscous 
sublayer, Launder et al. (1987) concluded that the shear stress 
damping is "largely independent of viscosity." This implies that 
a proper modeling of the pressure-correlation in the vicinity of 
a rigid wall should eliminate a need to modify the model for 
viscous damping. A way to do this is to employ the stress 
anisotropy invariants Az, A3, or "flatness" A, representing the 
wall-induced stress anisotropy. Some more recent proposals in 
this direction will be discussed in the next section. 

4. S o m e  o p e n  issues and  c u r r e n t  e f f o r t s  
t o w a r d  t h e  m o d e l  r e f i n e m e n t s  

In spite of years of intensive development and use of turbulence 
models, there are still many open queries that either have been 
resolved only partially to suit immediate needs or still pose 
serious challenges. Such are the problems of modeling specific 
effects: streamline curvature, rotation, swirl, buoyancy, 
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compressibility, and three-dimensionality (most of these are 
characterized as extra-strain rates). Here no account of any of 
these specific effects will be given. Instead, we shall discuss some 
of the open issues that concern the models in general and that 
have major implications for the future use of turbulence models 
in more complex flows, with a focus on the near-wall flow 
regions. 

4. I. Reynolds-stress transport equation 

The transport equation for the Reynolds stresses can be 
expressed in symbolic form as 

- - -  u ~"-~ D.-~ Ou~+ 
Dt 3t k ~x k 

Lij Cij 

Gij 
Pu 

, o ,ox, i 

 --UI o:, I 4 

Di i 

The terms in the boxes must be modeled, and we shall discuss 
briefly the current practice and some latest developments in 

,--2ftk(U---7~Eik,. + u---~Qt,.) + 
/}u 
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modeling each of these terms. Much attention has been focused 
recently on the limiting behavior of turbulent stresses and terms 
in their transport equations as the wall is approached, the latter 
of which became fully known only after the appearance of the 
DNS data. The satisfaction of limiting forms is regarded 
nowadays as an important criterion for judging the feasibility 
of the models that are designed for the integration up to the 
wall. The limiting behavior can be evaluated by expanding the 
instantaneous velocity and pressure near the wall: 

ui = ai + biy + ely 2 + diy 3 + "'" (2) 

p = ap + bpy + cpy 2 + dpy 3 + " "  (3) 

where al = 0, b 2 = 0 (for an incompressible fluid), but ap #= 0. 
Table 1 shows the wall limiting values of terms in the uiui 
equation in the nondimensional form, which balance the budget 
in the near-wall region (for notations, see Equations 2 and 3). 
Note that Pu ~ y3 for all components except for i # j if i or j 
is 2. Likewise, Dtu ~ y3 for i = j  = 1 or 3, D~2 and D~3 vary as 
y4, whereas D~2 ~ yS. For these reasons, Pu and D~j are not 
included in the table. 

4.1.1. Turbulent transport. The turbulent flux term 
consists of the velocity transport and pressure transport 

c~ [~ (p'--~6~,~ + ~-U-jf,k)1 (4) D:j = Di~ + 0 5 = dx ,  uiujuk - dx~ 

Both parts of the term have to be modeled. Triple velocity 
moments have been measured in a variety of turbulent flows 
(see, e.g., Schwarz and Bradshaw 1992), whereas the pressure 
diffusion is still intractable to any measuring methods. Useful 
hints for modeling triple moments can be found in the exact 
transport equation derivable directly from the Navier-Stokes 
equation, or in general kinematic expressions for the 
triple-moment tensor. For this reason, most models treat both 

Table 1 Near-wall behavior of pressure terms, viscous diffusion, and dissipation 

ij Fl q O[ i t ij 

11 -4blC-'-~y ~ - ~  +12blC, Y ~ + 8blClY 
2ao -&a ab, --/ 0x~- y \ P0xl +461cl y 

22 - 4c--~ y2 12c2c 2 y2 8c2c 2 y2 
4apC2Y -- (4a-~ y + 4c-~y 2) 

33 - 4 b 3 c 3 y  ~ 2 ~  + 12b3c3Y [ ~  + 863c3Y 

2ap ab3 
0x~ y \ 0x3 / 

12 - 2bl c2 Y 6bl c2 y 4bl c 2 y 
apbl - ( apbl + 2bl c2 Y) 

23 - 2b3c2 y 6 b3c 2 y 4b3c2 y 
apb3 -(apb3 + 2b3c2y) 

13 -2(blc3 + b3cl)y 

a fob1 + Ob3~y /'Oh, Ob3~ 
P~Ox, OXl] -ap t~x3 + ~x l ) y -  2(b, c3 + b3c,)y 

'~---] + 6(blc3 + b3cl)y [ - ~ +  4(blc3 + b3Cl)Y 

Note: Terms in boxes are in balance at the wall. 
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terms jointly, although the arguments for designing the model 
are essentially those for triple moments. This does not 
necessarily mean that the pressure transport is negligible, 
although some consideration of the stress budget as well as the 
theoretical estimates seem to suggest this. 2 Irrespective of the 
analytical arguments employed for modeling, all known models 
use the stress gradients to express the turbulent transport terms, 
although some more complex models also employ the gradients 
of the turbulence scale or of the scale-supplying variable, such 
as the dissipation rate e. The most popular is the gradient 
expression, attributed to Daly and Harlow (1970) (denoted 
hereafter by DH), by which the transport of the turbulent 
stress u~uj is expressed in term of its gradient: 

k _ _  c~u--~j 
uiuiu~ = - Cs - ukul - -  (5) 

e ~xt 

with C~ = 0.22 (in fact, values between 0.20 and 0.25 are 
found in the literature). The major shortcoming of the model 
is the nonpreservation of the symmetry in the indices, so that 
the model is not rotationally invariant and the relation depends 
on the choice of the coordinate axes. Shir (1973) simplified 
further the expression by employing the isotropic transport 
coefficient 

k 2 6 q ~  
UiU~Uk = - C~ - -  - -  (6) 

F, OX k 

(referred to also as the simple-gradient hypothesis), which, 
like the DH model, does not satisfy the coordinate invariance 
and introduces even more restrictions. 

Starting with the transport equation for the triple-velocity 
products, which was truncated to the algebraic expression by 
neglecting the transport term, eliminating fourth-order 
cumulants on the grounds of the quasi-Gaussian assumption, 
and expressing the pressure-velocity correlation to be 
proportional to the triple moments themselves (analogous to 
the model of the slow pressure strain term in the stress 
transport equation) Hanjali6 and Launder (1972) (denoted 
hereafter as HL) derived the invariant form of the expression 
for turbulent velocity transport: 

uluiu k = - C  s -  ~ + u j u  l - + ~  (7) 
e ~x~ ~xt c~xt I 

where Cs = 0.11. 
The HL expression was found to perform better in several 

types of turbulent flows (see below), but has not been 
extensively used for practical computations because it gives rise 
to a large number of component terms (in fully 3-D flow, 27 
terms), particularly in non-Cartesian coordinates. 

A simpler form that still satisfies the condition of 
coordinate-frame indifference is the expression attributed to 
Mellor and Herring (1973) (denoted hereafter as MH), which, 
unlike the HL expression, uses the isotropic transport 
coefficient: 

u~uju~ = - G  ~ \ Ox~ Ox s Oxk / (8) 

where C~ ~ 0.15. The expression requires the evaluation of 
only nine derivatives in a general 3-D flow. 

Based on kinematic arguments and using the moment- 
generating function, Lumley (1978) analytically derived a more 
elaborate expression (strictly valid for weakly inhomogeneous 
flows) that does not contain adjustable constants (see also 
Schwarz and Bradshaw 1992): 

1 k Gqk ~ 5 (Girjk + Gjfik + GkfiJ) 
u~ujuk -- 3CsL e 4C~L + 

(9) 

where 

k f a~Tu k c3u---~ u~.u OU---~ 
GUk = - lU iU  t -  + UjU t -  + and Gi =Gm 

\ ~x, &, ~ '  ax, J 
(10) 

in which the first term is in fact the HL expression (G~ k is 
the same tensor as in the HL model). In the original expression 
of Lumley (1978), the coefficient C,t is specified in the form of 
a function of Re,, A2, and A3, whereas Schwarz and Bradshaw 
(1992) assign a value of 3.4 in their numerical test of the model 
application to a 3-D turbulent boundary layer. In comparison 
with other models, Lumley (1978) explicitly proposed that the 
pressure diffusion be expressed in the same form, i.e., 

1 
- pU---~k = --0.4kUk (11) 
P 

Magnaudet (1992) argues that none of the quoted models 
satisfies what he calls "asymptotic consistency"--essentially 
2-D turbulence, encountered near a solid wall outside the 
viscous sublayer or at a free surface, when the normal velocity 
fluctuation vanishes and the tangential velocities remain 
nonzero. Magnaudet (1992) proposed a more general 
expression that also contains the gradients of the kinetic energy 
and its dissipation rate ("cross-diffusion"), which supposedly 
satisfies the asymptotic constraints in the near-surface region: 

- u i u ; u  k = -  Csl ~ - - + u j u t - - +  
e Oxz Oxl c~x~ I 

( g~kUt+u__ Ou, u ~ Ou-~) (12) 
-I- Cs2 ~ OX~ OX 1 + UjUk X I ,/ 

1 
+ ~ (u---~. u~u, + u,u~. uju, + uj~.u--~) 

x Cs3 0x~ + e 

Verifications of the proposed models in a variety of flows 
(mainly simple ones at high Re numbers) have been reported 
in the literature. Cormack et al. (1978) compared several 
models, including a complex model of their own (not discussed 
here) for four different flows (asymmetric channel, pipe flow, 
wall jet, and mixing layer). They found that their model 
performed best, but cautioned against its use because of its 
complexity. Instead, they recommended the HL model, which 
they found satisfactory in most cases considered. Amano and 
Goel (1986) compared some of the measured triple moments 
with those computed by the DH and HL model for the case 
of flow in a channel with a backward-facing step and concluded 
that the agreement is better in the latter case. More recently, 
Demuren and Sarkar computed the high-Re-number flow in 
a plane channel by using the DH, HL, and MH models in 
conjunction with several models for the pressure strain terms 
and found that all three models give similar results in most 
parts of the channel, but that the MH model reproduced best 
the relaxation towards isotropic conditions as the channel 
center is approached. Schwarz and Bradshaw (1992) measured 
all 10 components of the triple-velocity moments in a 3-D 
turbulent boundary layer on the fiat floor of a duct with a 30 ° 
bend. On the basis of measured turbulent stresses (and 
estimated dissipation from the balance of kinetic energy), they 
evaluated the triple moments by the DH, HL, and Lumley 
expressions and found that all three models perform reasonably 
well in both 2-D and 3-D boundary layers and that Lumley's 
model performs marginally better for some components. 
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All the tests mentioned above were carried out for fully 
turbulent flows and outside the viscous wall region. Some 
authors share views that, excluding some specific flows and the 
near-wall viscosity-affected region, the turbulent transport is of 
minor importance, and the use of more complex models does 
not bring benefits in proportion to the increased consumption 
of computing resources (e.g., Launder (1990)). However, the 
DNS results of Kim et al. (1987) and Mansour et al. (1988) for 
a plane channel contradict the above view, at least for the two 
relatively low Re numbers (5600 and 14,000), indicating that 
the turbulent transport becomes an important part of the stress 
budget in the near-wall region up to y+ = 7 0  for all 
components except for the spanwise one. This, of course, 
excludes the viscous sublayer below y+ < 5 where the triple 
moments diminish rapidly as the wall is approached. 

It is interesting to note that the DH, HL, and Magnaudet 
models predict a correct trend for most components, including 
the change of sign roughly in the buffer zone, but the intensity 
was severely underestimated by the HL model and much 
overestimated by the Magnaudet model. Figures 8 and 9 
compare the performances of several models for two selected 
components of stress diffusion in a plane channel at Re = 5600. 
Contrary to the earlier-mentioned findings of Cormac et al. 
(1978) and Amano and Goel (1986), in the low-Re-number 
channel flow the DH model seems the closest to the 
experiments for most components, although insufficient in 
magnitude. An increase in the empirical coefficient could have 
brought the peak values into closer agreement. 3 Some 
improvement, both in shape and magnitude, can be achieved 
by using a part of the Magnaudet expression containing the 
gradient of e and, to a lesser extent, of k ("cross-diffusion"), as 
shown in Figure 8 (cases with C,2 = 0). Of course, as indicated 
before, the asymptotic behavior toward the wall is not satisfied 
by any of the compared models. DH and HL expressions 
behave ~y ,+4  as y ~ 0 ,  whereas the normal-to-the-wall 
derivatives of the triple moments approach the wall with y" ÷ 1, 
where n > 2 is the exponent of the relevant stress component 
(u--~ ~ 3/'). It is interesting to note that a part of the general 
expression, derived by HL from the exact equation for the triple 
moment, contains the terms in the form u~uT~kS u (where 
S u = 0.5(~U.ff#xs+ ~Uff~x~)) that have a proper slope at the 
wall. These terms have been neglected in the past. 

The DNS results for the plane channel (Kim et al. 1987) 
confirmed indeed that the pressure diffusion is negligible, as 
often assumed. However, because of nonzero pressure fluc- 
tuations at the wall, for u 2 and ~ it is D~. that closes the 
budget of the u~u~ equation at the wall. The gudget could be 
closed by an appropriate model of the 1-I u = (l)u+ D~, which 
will.._approach the wall linearly (see Table 1), though 
the u22 equation will still remain unbalanced. Because most 
current models use quadratic or higher-order damping of 4)u, 
some authors introduce a separate model of pressure diffusion 
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Figure 8 Triple velocity correlation EO-~ + in a plane channel at 
Re = 5600. oo: DNS (Kim et al. 1987); lines: modeled results 
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u ~ + / d y  +) in a plane channel 

in a discriminative form (by means of unit vectors normal to 
the wall), which makes contributions only to the u 2 and 
ul u2 components (Launder and Tselepidakis 1987; Lai and So 
1990). 

A promising approach is that proposed by Nagano and 
Tagawa (1991) based on the structural characteristics of the 
shear-generated turbulence, which allows the evaluation of all 
mixed components of triple-velocity products ~ from the 
skewness factors of velocity fluctuations. Tested in several types 
of flows, the method showed good agreement with measure- 
ments. The method requires, however, the modeling and 
solution of the transport equation for the third moment 
of each velocity fluctuation u~. Although this is a much simpler 
task than solving the transport equations for all triple 
correlations, the equation set becomes too cumbersome for 
application in more complex flows, not to mention still 
unresolved uncertainties in modeling equations for the triple 
moments. 

4.1.2.  P r e s s u r e  s t r a i n .  The model ing of the pressure- 
straining redistribution, defined as 

= = - + (13) 
p \~xj ~xff 

remains the most uncomfortable task. The term is usually 
decomposed into three parts, which follow from the exact 
Poisson equation for the pressure fluctuations. The first two 
terms are strictly the volume integrals of the two-point 
correlations, whereas the third term represents the surface 
integral and is effective only in the vicinity of a solid wall or 
interphase surface. Various proposals for modeling each term 
were put reward over the years, but most models differ only in 
minor, although not unimportant, details and in the degree to 
which they satisfy realizability, coordinate-frame indifference, 
and other constraints. Invariably, all proposals are based on 
intuitive arguments formulated in a general way by imposing 
the kinematic constraints from tensor algebra: symmetry, zero 
trace, Caley-Hamilton theorem, etc. Proposals originating 
from the groups of Launder and Lumley lead the field, with 
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T a b l e  2 C o e f f i c i e n t s  in m o d e l s  fo r  (blj 

~ij,1 (~ij,2 

Linear Quadr. Linear Quadratic C u b i c  

Author(s) C 1 C~ C 2 C 3 C4 C5 C6 C7 C8 

LRR ( I P )  1 . 8  - -  - -  0.8 0.6 0.6 - -  - -  - -  

LRR (QI) 1.8 - -  - -  0.8 0.873 0.655 - -  - -  - -  
SSG 1.7 - 1 . 0 5  0.9 0.8 - 0.625A~/2 0.625 0.2 - -  - -  - -  

ChL, SL 0.5fl 0.25? - -  0.8 0.6(1 q- 0 . 8 A  1 / 2 )  - -  0.2 0.2 - -  

CL 3.1 (A~A) w2 1.2 - -  0.8 0.6 0.866 0.2 0.2 1.2 
LT 6.3AFW2(1 - f) 0.7C~ - -  0.8 0.6 0.866 0.2 0.2 2r 

Note: A = 1 - 9/8(A2 - A3); A2 = aoaj~; A3 = aqa~kagi; f =  max(1 -- Ret/140, 0); F =  rnin(0.6, A2); r =  min(0.6, A);  fl = f l (A 2, A 3, A, Re0; 
= 7(A2, A 3, A) ( s e e  C h o i  and Lumley, 1984). 

A b b r e v i a t i o n s :  LRR: Launder, Reece, and Rodi 1975; SSG: Speziale, Sarkar, and Gatski, 1991; ChL: Choi and Lumley, 1984; SL: Shih and 
L u m l e y ,  1 9 8 5 ;  C L :  Craft and Launder, 1991; LT: Launder and Tselepidakis, 1991. 

some notable recent contribution from the NASA groups (e.g., 
Shih et al. (1992); Shih and Lumley 1992; 1993). An attempt to 
give a comparative tabular review of some of the most popular 
and recent models is given in Table 2. Here, we shall briefly 
discuss major points and some of the open issues relevant to 
the complex flows in engineering and aeronautics. 

The first part of the volume integral (the "slow" part) Cq. 
contains only velocity fluctuations and causes turbulence to 
approach an isotropic state itself, irrespective of turbulence 
generation. For that reason, ~ j .  a is usually modeled in terms 
of the stress anisotropy tensor a~j = ~ / k  - 2/3,~j and its first 
and second invariants A 2 = ao.aj~ and A 3 = aijajkak~. A general 
nonlinear model follows from the Cayley-Hamilton theorem 
(Lumley 1978) and can be expressed as 

~ij, t = - e [ C l a o  + C'l(a~jajk -- ½A26ij)] (14) 

Most earlier models employ only the first term, which is 
essentially Rotta's (1951) linear model with the values of C 1 
between 1.5 and 3.5. This form does not satisfy the 2-D 
turbulence limit (that ¢ ~ ,  1 should equal zero if uqq is zero, with 

denoting the principal stress axis). A way to satisfy this 
requirement is to consider Ca as a function C1 = A f ( A 2 ,  A3, 
Ret) (Launder 1990) where A = 1 - 9/8 (A 2 - A3) vanishes in 
the 2-D limit. Alternatively, this can be achieved by replacing 
e in Equation 14 by g = e -  2v (t~kl/2/~Xn) 2. The two- 
component limit can be directly satisfied by the nonlinear 
model if expressed in a specific form (Reynolds 1984). 

Lumley (1978) showed analytically that C a cannot be a 
constant and proposed an expression for C a in terms of A2, 
A3, and Re t for the linear model. Weinstock (1982) calculated 
from first principles that C1 differs even for different 
components--which was also confirmed by DNS results for 
several wall flows (Kim et al. 1987; Spalart 1988)--and 
suggested that ¢~j.1 should be modeled in terms of the 
anisotropy of the dissipation rate tensor e i j=  e~j /e-  2/36~j, 
instead of a~j. The same proposal came from Lee and Reynolds 
(1985), whose DNS of homogeneous turbulence, subjected to 
irrotational strain and subsequently relaxed, showed that ¢~j, 
is well correlated with e~ jx /~  r Because the considered flow had 
a very low Re number, it is questionable how the model would 
perform at higher Re numbers and in inhomogeneous flows. 

The inclusion of the nonlinear term brings in more flexibility 
but also an additional coefficient C'1 and new uncertainties. 
Speziale, Sarkar, and Gatski (1991) (denoted as SSG) found 
that the best predictions of several homogeneous flows are 
achieved with C'~ having an opposite sign from C 1 (C 1 = 1.7, 

C'1 = - 1.05) (found also by Hanjali6 et al. 1992). Launder and 
Tselepidakis (1991) (also Fu et al. 1987; Craft and 
Launder 1991) used C'a = 0.7"C1 where C 1 = Ca(A2, A 3, 
Rer) (see later). More recently, Demuren and Sarkar (1993) 
reported that the SSG model, used with wall functions, 
reproduced well the experimental data of Laufer for a plane 
channel at Re = 52,000 (outside the viscosity-affected region). 

The rapid part of the pressure-strain redistribution ~ij.2 is 
usually represented in the form 

8U~ 
dPlJ'2 = c~x,,, (al~i + a~/) (15) 

which presumes that the mean velocity is nearly homogeneous. 
Fourth-rank tensors are expressed in terms of the turbulent 
stress anisotropy aij in a linear or higher-order form, and 
coefficients are sought from various kinematic and symmetry 
constraints. Practically, all proposed expressions can be written 
in the general form containing the mean rate of strain 
Sij, mean vorticity ~i~ and stress anisotropy tensors aij: 

(~ij, 2 ~- C2Paij + C3kSi j  

+ C4k(aikSjk + a ikSik -- 2ak~Sktrij) 

+ C5k(aik~jk + ajkf21k) 

+ C6k(aikaktSjt  q- ajkaktSit -- 2akjaliSkt -- 3a(iaklSkt ) 

d- CTk(aikakl~jl  -'[- ajkakl~)il) 

+ Csk[a2,,(aikf~jk + ajkflik) + 3amia,,j(a,,kfl,,k + a,,kfl,,,k)] 

where 

t3U i 1 (t3Ui + 8 U f ) ,  
P = uiu---j - - ,  S 0 

1 (c~U i ~Uf~ 

(16) 

(17) 

The expression reduces to the simplest "isotropization of 
production" (IP) model of Launder, Reece, and Rodi (1975) 
(denoted as LRR), when C2 = 0, C3 = 0.8, C4 = C5 = 0.6 and 
C6, C7, C a are zero, or to their "quasi-isotropic" (QI) model 
when C 2 = 0, C 3 = 0.8, C 4 = 0.872, C 5 = 0.6545, and C6, C7, 
Ca = 0. Both models have been extensively in use in spite of 
noted deficiencies (i.e., the need to account for wall reflection, 
poor performances in swirling flows in impingement regions 
(e.g., Craft and Launder 1991). Shih and Lumley (1985) argued 
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that the linear expression cannot satisfy the realizability 
conditions as the turbulence approaches a two-component 
state, and proposed a more general form that contains 
quadratic terms (see Table 2). 

Speziale, Sarkar, Gatski (1991) proposed a model containing 
the same linear terms as the LRR model, but with some 
coefficients dependent on the turbulent stress invariants and 
turbulence production (hence, "quasi-linear"). They found that 
the model satisfies both the homogeneous and wall-equilibrium 
flows without a need to introduce the wall-reflection correction 
as used by LRR. Like the LRR model, the SSG model does 
not satisfy the realizability constraints. Of the nonlinear 
models, we will mention several variants of the Shih and 
Lumley models and also of the Launders group model. The 
latest version of the Shih and Lumley model (1992) strictly 
satisfies both the Schwartz inequality and the two-component 
realizability constraints. The same claim is made for the 
higher-order model of Fu, Launder, and Tselepidakis (1987) 
(also Craft and Launder 1991; Launder and Tselepidakis 1991), 
which is essentially cubic in the turbulent stress, and which 
contains only one freely determinable coefficient. This model 
was developed with the specific aim of accommodating more 
complex 3-D turbulent flows. In addition to better satisfying 
the kinematic constraints, both nonlinear models are claimed 
to eliminate some deficiencies of the linear models (see, e.g., 
Shih and Lumley 1992; Launder 1990), but are much more 
complex for use in engineering computation. 

The wall-reflection term ~ . w  (introduced by LRR, Shir 
(1973), and Gibson and Launder (1978) to compensate for 
notable differences in stress anisotropy in the wall and 
far-from-the-wall homogeneous flows at comparable shear 
rates) was also supposed to simulate the surface integral of the 
Poisson equation ~o. w. The net effect is a selective damping of 
the fluctuations only in the direction normal to the wall. In 
order to introduce the damping effect with a selective 
orientation, all models contain a function that is related to the 
normal distance from the wall and is not coordinate-frame 
invariant. The addition of ~o, ~ has been generally regarded as 
an unavoidable necessity, but because of its relation to the local 
wall distance, it represents a major weakness. This deficiency, 
as well as more recent experimental evidence that the wall 
damping effect is smaller than considered hitherto (e.g., 
Speziale, Sarkar, and Gatski (1991)), prompted a new tendency 
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Figure 10 The shear stress and rms of u~ and u2 in an impinging 
jet (Craft and Launder 1992). A ,  o ul, u2: experiments. Com- 
putations: - - -  : basic model; : new reflection model 
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Figure 11 Mean velocity and shear stress in an impinging 
jet--~omputat ions with Re-stress models (Jakirli6 and Hanjali6 
1993). DSMO: basic model; SSG: Oij model of Speziale, Sarkar 
and Gatski 1991; RNG: RNG-modif ications of e-equation and 
diffusion coefficients 

to eliminate this term by constructing better forms of the 
models of *~j, 1 and *~j. 2, which should account for the wall 
reflection in a general and invariant manner. Some success in 
this direction has been claimed for simple wall-parallel flows, 
but it seems that predictions of turbulence properties in a 
stagnation region require even a more elaborate model of ¢#.w, 
as illustrated below. 

The initial model of *~j, w was introduced to accommodate 
the wall-reflection effect in wail-parallel flows (but outside the 
viscosity-affected region) and was designed to diminish the 
transfer of energy into or out of the normal-to-the-wall 
component, irrespective of how the turbulence energy is 
produced and into which component it is being fed. Craft and 
Launder (1991) argued that in a stagnation region, it is the 
normal component that receives most of the energy and then 
shares it with other components by the redistributive action of 
the fluctuating pressure. Hence, the transfer out of the normal 
component is most intensive, whereas the original ¢o,w acts to 
hinder this transfer. Craft and Launder (1991) proposed a more 
general form of ¢~j.w, which greatly improved the predictions 
of the stress components and, consequently, of heat transfer in 
the stagnation region of a jet impinging normally on a flat 
surface, as illustrated in Figure 10. The model, however, still 
contains a function in terms of the local wall distance. It should 
be pointed out that the SSG model cannot remedy this 
deficiency, as shown in Figure 11. 

A way to construct an invariant form of the ~ij.w may be to 
employ the "flatness" of the stress-anisotropy A instead of the 
local wall distance. However, because the pressure-strain 
interaction is of elliptic nature and is governed by the integral 
of the Poisson equation over the whole visible flow domain, 
the real effects of the wall can hardly be accounted for by 
models involving only the local flow properties. The model of 
the surface integral in the regions close to a solid boundary in 
terms of local properties, even if they involve the local distance 
from the wall, is even more questionable due to strong 
inhomogeneities. Durbin (1991, 1993) proposed a way to 
account for the nonlocal nature of the effect and for the 
near-wall inhomogeneity 
modeled set of transport 
order differential equation 
the function f~j = ~j/k 

1 
L~v~f,j _ f,j = ~ 0 , ' ?"  

by solving--in addition to the 
equations--an additional second- 
("elliptic relaxation equation"), for 

(18) 

Int. J. Heat and Fluid Flow, Vol. 15, No. 3, June 1994 189 



Advanced turbulence closure methods: K. Hanjalid 

where for the source term @~RR the standard (local) model of 
LRR for the ~u was applied (other models can also be used), 
and L is the turbulence length scale. Application of the model 
with a new definition of turbulence scales in the viscous wall 
region (see below) for several wall thin shear flows produced 
good agreement with the DNS results and experiments. 

Modifications of the pressure-strain term to account for 
low-Re-number effect and to satisfy the two-component limit 
at the wall is still a subject of controversy. Essentially, viscosity 
does not appear in the Poisson equation for the fluctuating 
pressure, and consequently one may argue that viscosity does 
not directly affect the pressure-straining process. However, the 
wall damping within the viscous sublayer differs in intensity, 
and, probably, in mechanism from that in the outer turbulent 
wall zone. Let us confine our attention to the behavior of exact 
terms in the uiuj equation, particularly of terms involving the 
fluctuating pressure in the limit as the wall is approached. As 
seen in Table 1, at the wall, Cu = 0 for all i = j ,  but qb~2 # 0 
and is in balance with the pressure diffusion. Contrary to that, 
as shown in Table 3 (for notation, see Equations 2 and 3), 
a u ¢: 0 for all i=j ,  but a12 = 0. Obviously, Rotta's linear 
model of ~u. ~ with Ct = const. (and C'1 = 0; see Equation 14) 
cannot satisfy the wall limiting behavior of the exact 
pressure-strain term. It is also obvious that it will be too 
demanding to define a selective function C~ that will distinguish 
the diagonal from the off-diagonal components of @u' As 
mentioned earlier, Launder and Tselepidakis (1991) enforce C~ 
to satisfy the wall limit by multiplying it by A, but also by a 
Ret function, C~ = 6.3AF(1 - f) ,  where F = min(0.6, A~/2) and 
f = max(1 -R t /140 ,  0). In conjunction with their nonlinear 
model for Cu.z, and modifications of the e equation, as 
discussed later, they reproduce very well the DNS data of Kim 
et al. (1987) for Re = 5600 and Re = 14,000. 

As seen in Table 1, the sum of pressure-strain and pressure 
diffusion, H u = @u+ D~, goes to zero (though not at the 
same rate) for all i and j. This is why some researchers have 
proposed to model H u instead of Ou, or at least to interpret 
the model as simulating H u- and not @u- Lumley and Newman 
(1977) modeled jointly Hif-e u, whereas Launder and Shima 
(1989) proposed a model of ¢if-eq. The latter model employs 
the standard high-Re-number LRR model of Cu and the 
Gibson and Launder (1978) model of qbU. ~, but with all 
coefficients dependent on A 2 and A 3. 

4.2.  D i s s i p a t i o n  ra te  

The modeling of the dissipation rate in the Re-stress equation 
and the definition of the characteristic turbulence scale(s) used 
to model various terms in transport equations depend on the 
choice of the scale-supplying variable. Among a variety of 
variables, the most widely used is the dissipation rate of 
turbulent kinetic energy e, governed by the exact equation 

De c~e de 
- - = - - +  Uk Ox~xk = Dt Ot 

L, C, 

L 

- 2 v u  cOui BZU i 
k Oxl Ox~8xl 

• 

e,,-; J',2 I - I  -2v  au, c~uiauk __ 2(v 02ui ,~2 

PX 

2v Op Ouk l)  

I ' bf (19) 

, J  

+ Ox~ \ c~xk 
D" 

where the terms in the boxes are to be modeled. The first 
attempts to model the e-equation tended to draw the 
information from its exact form, but the outcome has in the 
past relied mainly on intuition. One of the reasons was the lack 
of information abbut complex interactions represented by 
various terms in Equation 20, but another was a limited 
number of variables available in the single-point closure 
technique to model unknown terms. Besides, what we need is 
the scale of the energy-containing eddies and the equation for 
the energy transfer from these eddies down the spectrum, which 
coincides with the dissipation only under the conditions of 
spectral equilibrium (Hanjali6, Launder, and Schiestel 1980). It 
is remarkable 4hat the modeled e-equation has persistently 
remained in use in its very primitive form as it first appeared 
for high Re-number flows (Davidov 1961; Hanjali6 and 

Table  3 Behaviour of stress anisotropy aij at the wall  and its vicinity 

aq 
ij Wall value Higher-order term 

2 2bl bl - b 3 b 3  
11 + 

3 bib1 +b3b3 

2 
22 - -  + 

3 

33 
2 2b3b3 - bl bl 

bl bl + b3b3 

12 0 + 

23 0 + 

2bl b3 
13 + 

bl bl + b3 b3 

4(b3b3blCl - bib1 b3c3) 
Y 

(bib1 +/93/93) 2 

2C2C2 
bl bl + b~b3 

4(b3b3bl cl - bl bl b3c3) 
Y 

(bl bl + b3b3) 2 

2bl c2 
- - Y  

bl bl + b3b3 

2b3c2 
- - Y  

bl bl + b3b3 

2(bib1 + b3 b3 ) ( bl c3 + b3cl) - 4 bl b3 ( bl cl + b3 c3 ) 

(bl bl + b363) 2 
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Launder 1972): 

D~ = (C,~P - C.2e) ~ + - -  C~ - u -~  
Dt OX k ~, 

(20) 

Although regarded from the very beginning as too simple for 
representing the dynamics of the turbulence energy decay rate 
and for serving as a source of the characteristic length scale, 
the modeled t-equation exhibited a surprising degree of 
generality. Numerous tests have revealed also its limitations 
and shortcomings, urging a search for a more general form. So 
far, however, none of the proposals for its refinements and 
generalizations has been able to withstand the scrutiny. 

The first term in Equation 20 is supposed to model the 
difference between the production of e due to vortex 
self-stretching P~4 and viscous destruction Y. These two terms 
dominate the dynamics of e at high Re numbers and balance 
the transport terms so that success of the model depends on a 
plausible modeling of the difference of two large quantities. For 
that reason, instead of modeling individually each term in the 
exact Equation 20, the efforts in the past have concentrated on 
modeling the net effect of major terms. Nevertheless, further 
improvement of the model of the e equation, particularly for 
low-Re numbers, should benefit from term-by-term analysis. 
The major source of e, known to originate from the promotion 
of energy transfer through the spectrum due to the 
self-stretching of vortex filaments, P,4, has been modeled in 
terms of turbulence energy production P (scaled by the 
turbulence time scale r = k/e). This is a radical over- 
simplification that imposes a number of constraints. Firstly, it 
presumes that the process is equally affected by both the linear 
and angular mean-flow deformation. Secondly, it does not 
provide room for modeling separately the effect of the 
mean-flow vorticity. Furthermore, it implies that the same time 
scale controls the process of production and viscous destruction 
of e. A more general model is needed that would remove the 
mentioned and other limitations as well as allow the effect of 
turbulence anisotropy and other parameters to play adequate 
roles. In fact, a model for the production of e in terms of 
turbulence (rather than mean-flow) parameters should be 
regarded as physically most justified and one that would satisfy 
the principle of physical coherence. As is well known, Lumley 
and Khajeh Nouri (1974) proposed to model the source of e 
solely in terms of the turbulence anisotropy second invariant 
A 2 = aua o. Although well argued, the idea did not prove to be 
very helpful when tested. However, like some other ideas that 
rest on sound physical reasoning, it deserves to be reincarnated 
and retested. A possible general source term can be recast in a 
functional form (for high Re-numbers): 

\ox,,,' 

St, f& a2 ~ .. . . .  (21) 

where S = (SuSjl) u2 and f~ = (~'~id~'~ji) I/2 are the moduli of the 
mean rate of strain S O and of mean vorticity f~u, respectively. 
In comparison with the standard form of P,, the introduction 
of new terms offers more flexibility in modeling various effects, 
and brings into play the time scale of the mean-flow 
deformation % = (0Ufldxj) -1 or S -~, in addition to the 
turbulence time scale ~ = k/e. 

Several previous proposals to introduce new terms in the 
forms listed in Equation 21 or others yielded improvements in 
predictions of some classes of flows (including 2-D separated 
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and 3-D curved channel flows), but were eventually found to 
worsen others. Pope (1978) proposed a mean vortex stretching 
term C,4(k2/e)Si~kflu (C,4 = 0.79) to resolve the "round jet 
anomaly" (smaller rate of spread as compared with a plane jet). 
Hanjali6 and Launder (1980) argued that a term C~4(qjkOUJ 
dxj)(E,,,kdU~/dx,) augments the generation of e by irrotational 
strain as compared with the shear strain, accounting thus far 
also for the streamline curvature. The introduction of this term 
in the dissipation equation produced improvements in several 
classes of evolving and nonequilibrium boundary-layer flows, 
reduced the excessive rate of spread of round jet, and increased 
the reattachment length in a flow behind a back step. Recent 
tests of this term in the computation of separated boundary 
layers helped to produce a separation (though with a 
substantial increase in C,~), "but left serious errors in the 
separation region" (Atkinson and Castro 1991). Neither of the 
two mentioned proposals withstands the tests in the decay of 
isotropic turbulence in a rotating frame and in homogeneous 
shear flow in a rotating frame (Speziale, Rishi, and Gatski 1990). 
A proposal from Bardina (1988) to modify both coefficients in 
the e equation in terms of the intensity, of mean vorticity, i.e., 
C~1 = 1.50 - 0.015(k/~)t) and C~2 = 1.83 - O.15(k/e)~ (where 
f~ = ~ ) ,  seems to account better for the rotational 
strain. Earlier experiments at UMIST (Fu, Launder, and 
Tselepidakis 1987), with the inclusion of an additional source 
term in the form 0.6A2e/k and a decrease in the value of C~1 
from the standard 1.4 to 1.1, have also resulted in the 
diminishing of anomalous predictions of the axisymmetric jet. 
A more recent version, apparently recommended at present for 
free flows, replaces C~2 by the function 1.92/(1 + 0.65AA12/2) 
with C,x = 1, or C~1 = 0.35, but with an additional production 
term in the form 0.35vt(e/kXOUffSx~) 2 (essentially the second 
term in Equation 21; see Craft and Launder 1991). 

Another possibility lies in the revision of the model of 
the diffusion term. Neglecting transport terms in the exact 
equation for the correlation Qk = VUk(~Uff~Xj)  2 yields the 
expression 

k ( & ~ ~U~\ 
Qk = --C~-g _u--Z~'i ~-x + C'e ax~ + Qj ~Tx~ ). (22) 

Only the first term has been retained in the standard model, 
a simplification justified for wall boundary layers on the basis 
of an order-of-magnitude estimate; but for more complex flows, 
these arguments do not hold. No serious testing of the above, 
more general formulation has been reported, although some 
numerical experiments with other additional diffusion-type 
terms, formulated in an ad hoc manner, e.g., 

ctxj p clxff ax Z \ axff \axff  (23) 

to improve the predictions of nonequilibrium wall boundary 
layers did not yield the desired effects. Some attempts in a 
different direction--to ensure the experimentally detected 
constancy of the length-scale gradient in the near-wall region 
in strongly nonequilibrium flows and close to the reattachment 
points in separating flows--through the dependence of C~ on 
the ratio Pie produced only modest improvements. A recent 
introduction of an extra term (Launder 1990) in the g-equation, 
tailored to compensate excessive departure of the length-scale 
gradient in the near-wall region, improved predictions of flow 
and heat transfer in some separating wall flows, but its 
dependence on the near-wall distance makes it inapplicable in 
more complex geometries. 

New chances lie in revisiting some other discarded or not 
fully explored ideas of the past. Following the direct-interaction 
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(DI) approximation of Kraichnan, Yoshizawa (1988) derived 
arguments for mixed- or cross-diffusion terms in both the k-  
and e-equation. Another route has been followed by Aupoix et 
al. (1987) who derived the e-equation for homogeneous ~.5 
turbulence following the MIS (Methode Integrale Spectrale) 
approach, which assumes the evolution of an a priori defined ,.0 
energy spectrum shape. 

The Renormalization Group Theory (RNG) of Yakhot and .~ 
Orszag (1986) and Yakhot et al. (1992) seems to offer a new 
theoretical support to the basic form of the e-equation, and 0. 
also perspectives to better account for the effects of extra strain 
rates. Without going deeper into the theoretical arguments and -.5 
mathematical derivation, which is beyond the scope of the 
present review, it is worthwhile to look at the implications of 
the theory on the final form of the modeled set of equations. 
The first conclusion put foward by the authors was that the 
theory yielded the same form of the dissipation equation for 
high Re numbers as Equation 20 with an additional term, and 
produced the numerical values of the coefficients--consider- ~'~ 
ably different from the standard values--without employing 
any experimental results.* However, although seemingly very t.0 
precise (given to four decimal digits, e.g., C,~ = 1.063, 
C~2 = 1.7215!), the coefficients had to be brought closer to the "~ 
conventional values to reproduce some simple flows, and new 
values have recently been proposed, namely, C~t = 1.4 and 0. 
C,2 = 1.68 (Orszag et al. 1993). Besides, Speziale (1991) 
commented that the original value of C,~ was too close to 1, -.~ 
which defines the singularity of the e-equation. A considerably 
smaller value of C,2 from the standard value of about 1.9 is 
compensated for by a higher diffusion coefficient (by 80%) and 
the additional term. However, this model produces the 
exponent of the isotropic decay n = 1.47, which is far higher 
than the experimentally obtained value of 1.1-1.25. The major ,.s 
implication of the RNG theory on the e equation is, however, 
a new term ~.o 

(24) "~ 
1 + fl~3 k 

0 .  

R - 
~/(1 - ~?/~/o) Pe  

where r /=  Sk/e is the ratio of turbulence to mean strain time 
scale and/~ ~ 0.015 is the constant, r/0 was chosen as 4.38 and 
represents a typical value in homogeneous shear flows. This 
additional term deserves attention because it changes sign 
depending on whether the time-scale ratio ~/ is greater or 
smaller than the homogeneous value ~/o, distinguishing in such 
a way the small from the large strain rates. This feature has 
probably contributed more than other modifications to an 
apparent success of the model to predict the appropriate length 
of recirculating zones of several separating flows, as compared 
with standard models (see, e.g., Orszag et al. 1993). However, 
the RNG-derived k-e model (both the high- and low-Re 
number versions) brought only marginal improvement of the 
velocity field in a flow through a staggered tube bank, as shown 
in Figure 12 (but no improvement in the badly predicted shear 
stress field). Incorporated in the standard high-Re-number 
DSM, the RNG e-equation produced inconclusive effects in the 
impinging jet (see Figure 11). This and other experience suggest 
that more research along these lines may result in a more 
general and universal form of the dissipation equation. 

Low-Re-number modifications of the dissipation equation, 
first proposed by Jones and Launder (1972) and subsequently 
modified by Launder and Sharma (1974), seems still to be the 
most frequently used in conjunction with the two-equation 
models. By adopting a zero value of e at the wall, Jones and 
Launder (1972) essentially do not solve the equation for true 
d i s s i p a t i o n  e, but for its homogeneous part ~ = e - 2v(~kl/2/~x,) 2. 
Many other forms of low-Re-number e-equation have been 
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experiments (Simonin and Barcouda 1988); computations by k-~ 
models (Had~.ir, Hanjali6 and Peri6 1993) 

proposed. In fact, some models, e.g., Lam and Bremhorst (1978) 
are preferred by some users because of their robustness, which 
is usually achieved by introducing empirical damping functions 
in terms of local wall distance y+ (or Rez + = ykl/2/v). These 
functions avoided the use of second velocity derivatives as in 
the e-equation in the Jones-Launder model. A comparison of 
a number of models was given by Patel et al. (1985). Still, some 
recent tests of bypass transition (Savill 1993) as well as 
computation of some separated flows (Franke and Rodi 1991) 
give preference to the Jones-Launder-Sharma model. More 
recently, Rodi and Mansour (1993) analyzed several popular 
low-Re-number k-e models with the aid of DNS data for 
channel flow from Mansour et al. (1988) and found that none 
of the considered models produced an adequate form of the 
damping function f~, used in the eddy-viscosity expression. 
They proposed a new f ,  in terms of y+ as well as new 
modifications to the e-equation. 

The form of the "true" e-equation compatible with the 
Re-stress model was first proposed by Hanjali6 and Launder 
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(1976): 

= - -  V + - -  C e-t~kt h 
~ t  "~- k dX k dX k dX k e 

e e~ 
+ C,1P  ~ -- C~2f~ 

k d2U i ~ 2 U  i 
+ C~3 v - UjUk (25) 

e ~x j ex  t ~Xk~X t 

Like the model of Jones and Launder, it contains an extra 
term with a second velocity derivative whose origin can be 
traced to the exact transport equation for e, and one scalar 
function in terms of turbulence Re number, f~ = 1 - (0.4/1.8) 
exp (-(ReJ6)2), that ensures a correct switch from the initial 
to the final period of decay of isotropic turbulence. 

In spite of some obvious shortcomings, the equation 
performed reasonably well in a variety of thin shear flows. It 
also served as a basis for further modifications, which in most 
cases were directed towards the replacement of the computa- 
tionally inconvenient second velocity derivative with some 
empirical functions. Due to the lack of reliable experimental 
data for the energy dissipation, no verification of the t-equation, 
in particular for the near-wall region, was possible until the 
appearance of DNS data a few years ago, which revealed that 
none of the current models could reproduce the near-wall 
behavior of e in accord with direct numerical simulation (see 
also So et al. 1991). The standard models, both within the 
two-equation and Re-stress framework, predict a peak in e at 
y+ = 10, whereas DNS gave the maximum e at the wall (Figure 
13). 

The discovery of this shortcoming stimulated the recent 
appearance of a number of new proposals for the modification 
of Equation 25. Some authors concentrate on the e-equation 
only (Rodi and Mansour 1993), whereas others consider general 
modifications of the model as a whole, so that it is difficult to 
distinguish individual effects of the introduced changes. Shima 
(1988) abandoned the last term in Equation 25, but introduced 
a new term as a function of e and ~ =  e-vt3Zk/t3xt~xz, 
supposedly to compensate for the failure of Equation 25 to 
satisfy the "coincidence" of be/dr and tg/dt(vt32k/bxlt~xt) at the 
wall. In addition, Shirma replaced the C~1 by a function of P/e 
and introduced a new damping function in terms ofy ÷. A test of 
the model in a fully developed, low-Re-number pipe flow 
produced only slight improvements of the stress components 
close to the wall. The model of Launder and Shima (1989) 
employs the e equation in its basic, high-Re-number form 
(Equation 20) but with the coefficient C,~ replaced by 
(C,1 + Wt + W2), where W1 = 2.5 A(P/e  - 1) and ~ 2  = 0,3(1 - 
0.3 A2) exp [ - (0 .002 Re,)2]. With their modification of the 
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Figure 13 Computed e from Equation 25 with additional term 
C~s(ak/dy)2; ~iuj(y) and U(y) data from DNS 

pressure-strain term in which all coefficients are treated as 
function of stress-anisotropy invariants and of Re, they 
obtained satisfactory predictions of several boundary-layer- 
type flows at both favorable and adverse pressure gradients. 
More recently, Shima (1991, 1993) also reported a reasonable 
success in reproducing 3-D boundary layers and oscillating 2-D 
boundary layers, indicating that the model, in spite of some 
formal shortcomings, seems robust and potentially useful for 
application in more complex flows. It should be pointed out, 
however, that the predicted shape of the dissipation rate close 
to the wall retained almost the identical form as obtained by 
most other models with a peak away from the wall. A more 
serious deficiency is its performance at high acceleration: in a 
sink flow, the model leads to a collapse of turbulence at a 
considerably lower value of the acceleration parameter than 
experimentally established. Lai and So (1990) and So, Zhang, 
and Speziale (1991) modified further the "coincidence" term of 
Shima (1988) and introduced some new damping functions in 
terms of the channel/pipe mean-flow Re number. In 
conjunction with their modification of the pressure-strain term, 
Lai and So (1990) obtained some improvements, though still 
insufficient, of the channel- and pipe-flow predictions at low 
Re numbers. Within the framework of their new low-Re- 
number, second-moment model, Launder and Tselepidakis 
(1991) use essentially the form of the e equation as given 
by Equation 25, but with C~1 = 1 and C,2 = 1.92/ 
[1 + 0.63 (AA2) 1/2] and with an additional diffusive term 
D~ = t3/~Xk(C~4v(~/k)t~k/~Xk), supposed to model the pressure 
diffusion. Excellent reproduction of all stress components in 
channel flows at two low Re numbers are partially 
accomplished by this new form of the e equation, although the 
major effect seems to be achieved by the modifications of the 
stress equation, as seen by the still unsatisfactory prediction of 
e and of the overall stress budget. 

Apart from the model of Launder and Shima (1989), all other 
models were mainly tested in simple plane channel or pipe 
flows. It is symptomatic that for these simple equilibrium flows, 
most of the models gave reasonable results for the mean-flow 
parameters and turbulent stresses, in spite of often very 
unsatisfactory budgets of stress components. The deficiencies 
of the e-equation and a wrong shape of e were compensated 
for by deficiencies in other parts of the models, so that the 
choice of the e-equation seemed to be more a matter of taste 
or of computational convenience. Some new efforts concentrate 
solely on the improvement of the form of the dissipation 
equation in order to reproduce the behavior of e in better 
agreement with the DNS results. Rodi and Mansour (1993) 
applied scaling argument to analyze the term-by-term modeling 
of the exact t-equation (Equation 20) and employed the ratio 
of the time scale of the mean rate of strain S to the Kolmogorov 
time scale of dissipative motion (v/e) 1/2 to define the damping 
function for the coefficient C,2, i e, f3 = exp (2R3), where 
Rp = -u--~2/(O.3k)(S/e/v) 1/2, " " P by which they model jointly 
P~ + Pc2 - Y. Although they reproduced the modeled group 
well in accord with the DNS results, it is pertinent to note that 
this modification will not satisfy, e.g., the decay of isotropic 
turbulence in the final period at low Re numbers. They also 
introduced an extra term in the model of P,a that involves 
(dk/Oy), (dU/dy), and (t~EU/t3y2). The authors did not report any 
testing of the new model as yet. 

Other routes are also possible. Hanjali6 and colleagues have 
recently tested effects of the addition of various terms, in 
invariant forms, to Equation 25. Some can be traced in the 
exact equation for e. Several terms individually or in 
combination can bring the e-profile in full accord with the DNS 
data (Hanjalic "and Jakirli6 1992), as shown in Figure 13. 
However, it should be recalled that deficiencies in e equations 
of current models must be reflected in deficiencies in other 
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equations which compensate each other, while producing 
acceptable predictions of tested flows. Any substantial 
modification of the e-equation requires inevitably a substantial 
modification of the u~ufequation (in particular of the ~ j  and 
D]j terms) if the model is expected to reproduce the practical 
flows in similar agreement to the current models. The idea, 
which essentially implies a separate modeling and verifying of 
each term in the model transport equations, as shown by Rodi 
and Mansour (1993) for the e equation in the k-e model, is also 
worth exploring for the Re-stress model, but represents a major 
task that still has not been carried out to full extent. 

Some recent developments indicate a possibility to design 
the transport equations applicable in low-Re-number flows and 
up to the wall without employing any empirical damping 
functions. The secret seems to be in the use of the Kolmogorov 
time scale (Durbin 1991, 1993) if the turbulence Re number 
becomes sufficiently low to incur the overlapping of the 
energy-containing and dissipative parts of the spectrum, as 
happens very close to the wall. Durbin argues that the eddy 
time scale cannot be smaller than the Kolmogorov scale and 
proposed to use the expression 

~ = max[ke, c~ (V-e)a/2 ] (26) 

The argument sounds correct, except for the need to introduce 
the empirical constant C~ ~ 6.4, which brings in a dose of 
arbitrariness, s Although the expression becomes effective only 
for y÷ < 5 (with an increase in C,, this range can be extended), 
in conjunction with the eddy viscosity defined as vlj = C,u-~z 
(with C u = 0.23 to account for the ratio ~2/k), the use of the 
new time scale eliminated the need to employ the damping 
function f,.  Durbin employs the same time scale instead of k/e 
also in both terms of the dissipation Equation 25, as well as in 
the model of the return-to-isotropy pressure strain term *~j. a. 
An analogous approach was adopted for defining the 
turbulence length scale, where needed. In conjunction with his 
elliptic relaxation model of the pressure-strain term, Durbin 
obtained turbulent stresses in a channel flow at Re -- 5600 in 
very good agreement with the DNS data. Good predictions 
were obtained also for constant pressure and adverse pressure 
gradient boundary layer, and somewhat poorer predictions of 
the boundary layer on a convex curved surface. 

In fact, if the expression for the eddy viscosity in the RNG 
variant of low-Re-number k-e model is interpreted as that for 
the total (effective) viscosity v,ff = v + v 6, then 

yields the eddy viscosity vt = Cukz (with Cu = 0.084) in 
which the time scale z is given as the sum of the time scale of 
energy-containing eddies and of the Kolmogorov time scale, 
i.e., 

= + - (28) 

where 2 / ~  = 6.9 is close to the value used by Durbin. 
This may explain the relative success of the RNG-derived k-e 
model in the near-wall region without using any damping 
function. 

4.2.1. Dissipation-rate tensor in the uiuj-equation. 
Most Re-stress models regard the dissipation tensor e u as 
isotropic even at relatively low turbulence Re numbers, so the 
most frequent form of the model- -a t  least for high-Re-number 
flows--is e~ = 2/3e6 o. Equipartition of dissipation among the 

normal stress components and neglect of the viscous terms in 
the shear-stress equation at sufficiently high-turbulence Re 
number has been regarded as justified, since this requirement 
is far weaker than complete isotropy of the dissipating eddies 
(Schwarz and Bradshaw 1992) and still weaker than the stress 
anisotropy. Even if this condition is not fully satisfied, any 
anisotropy can still be absorbed in the model of ~ij, as argued 
by Lumley (1978). The anisotropic form of e u was generally 
adopted only for the region very close to a solid wall, and its 
degree has usually been related to the local stress anisotropy 
aij. The coupling is accomplished by aid of turbulence Re 
number Re t. A common form, introduced by Hanjali6 and 
Launder (1976), and frequently used for modeling low-Re- 
number and near-wall flows, that satisfies the limiting 
conditions at both high and low Re numbers is 

eij = (1 - f~) ]61j~ + fse'ij (29) 

where originally e'~j=eu---~/k. Equation 29 expresses a 
proportionality of large-scale (stress) and small-scale (dissipa- 
tion) anisotropies, i.e., e~j = f~a~j, where ei~ = e0/e - 2/36q. The 
empirical function f~(Re,) should ensure a transition from one 
mode to another ("decoupling") at appropriate Re,. Hanjali6 
and Launder (1976) formulated f~ to decay fast as the distance 
from the wall increases, yielding the isotropic eq in the outer 
wall region even at relatively low bulk Re numbers. DNS data 
revealed a different trend: in a plane channel flow at Re = 5600 
(Mansour et al. 1988) as well as for Re = 14,000 (Kim et al. 
1987), over most of the wall region (up to y + =  60), the 
dissipation tensor exhibited a high degree of anisotropy very 
much in accord with % = u.~/ke, although e12 was small 
everywhere except very close to the wall (y+< 10). These 
findings seem to substantiate some arguments, proposed 
earlier, that the dissipation anisotropy in near-wall flows is 
d6minantly caused by the strong wall influence, which 
permeates well outside the viscosity-affected region. For that 
reason, but also to gain more flexibility, several groups of 
modelers introduced the second and third invariants A 2 and 
A2, as well as the "flatness" parameter A (Launder and 
Tselepidakis 1991; Gilbert and Kleiser 1991). 

Hanjali6 and Jakirli6 (1992) argued that neither Re t nor A 
are individually suited to model e~j in accord with the DNS 
data. A comparison of Ref for Re = 5600 and 14,000 shows 
that the turbulence Re numbers, Re,, coincide reasonably well 
up to y+ = 10 and then depart so that Re t cannot be employed 
to generate a unique f, up to y + = 60, as required by DNS 
data. On the other hand, DNS data show that the stress 
anisotropy invariants and the flatness parameter remain almost 
uninfluenced by the bulk Re number, whereas we expect that 
at very high Re numbers, e~j should become isotropic already 
at the edge of the viscous wall region. For  small Re (e.g., 
Re = 5600) the function f, = 1 -  x/A (Gilbert and Kleiser 
1991) produced e~j close to the DNS da ta - -apar t  from the 
limiting near-wall behavior. However, the function will 
produce the same degree of anisotropy in e~j at very high bulk 
Re number, contrary to real flows, where eu is expected to be 
fully isotropic. The function fs = exp (-20A2), as proposed by 
Launder and Tselepidakis (1991) satisfies the high Re number 
limit, but not the low Re number case (Re = 5600), since it 
decays sharply already at y + =  30. For these reasons, 
Hanjali6 and Jakirli6 (1992) proposed that f, be modeled in 
terms of the flatness parameter of the small-scale motion 
E = 1 -- 9/8(E 2 -- E3), where E 2 = eijeji and E 3 = eijejkeki are 
the second and third invariants of the stress dissipation rate 
tensor e i j=  eij/e -2/36~j, respectively. The expression in the 
form 

f , =  1 - -E"  
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satisfies the condition of local isotropy of the small-scale 
motion at high Re numbers, where E = 1 and s+j becomes 
isotropic irrespective of a o. It also satisfies the two-component 
limit where E = 0 and e, = a ,  (no summation of indices) for 
the remaining components• We tested several forms by using 
the DNS results for s and ~ and found that f,  = 1 - E 4 
reproduced ~+j in very good agreement with DNS data for e~j 
for all three normal components, although failed to bring 
sufficient improvement in e~2 (Figure 14). Still better results 
were achieved with a modified function f~ = 1 - A~/2E 4, which 
does not fully satisfy the mentioned limits of small-scale 
isotropy, but proved to be computationally more robust. The 
dissipation anisotropy can now be expressed as 

eli = ao(1 - A1/2E 2) (30) 

which illustrates essentially the nonlinearity of the proposed 
model. 

Launder and Reynolds (1982) noted that e' and, con- 
sequently, Equation 29 does not satisfy the limiting wall values 
of the individual components of e+j for the case when i and/or 
j take the value 2 (corresponding to the normal-to-the-wall 
coordinate). Simple derivation from Equation 2 shows that at 
a solid wall or phase interface, e o ~  = elk only if i and j take 
the values 1 or 3, while e22/u ~ = 4elk and e12 ul/'ff~'~ = 2elk. They 
proposed an expression in a general form that satisfies the 
limiting wall values of e o. Subsequent correction by Kebede, 
Launder, and Younis (1985) ensured that the sum of the 
diagonal components contracts to e and also reduced a 
prolonged effect of wall correction. 

Hanjali6 and Jakirli6 (1992) concluded that the wall 
corrections of e22 and el2, even in the corrected form, pertain 
still too far away outside the intended near-wall region and 
tested a modified form of the correction, 

e'i i = ~ U~iUj + u~iu~nkn j -t- UjUknkn i + 6+jfi"--ku%nknt)fd/ 

( l  + l's U'Uq n'nqfa) 

which differs from the original expression by the introduction 
of a damping function fd = (1 + 0.1Ret)- ~ (used earlier in the 
expression for eu). This modification was employed together 
with the new function f, to produce results shown in Figure 14. 

A nonlinear relationship between e+j and a u was recently 
proposed by Hallb[ick, Groth, and Johansson (1990) based on 
the expansion of the expression e+s = f ai~ + g ( a i k a j k  - -  1/3 A26ii), 
where f and O are assumed to be functions of stress invariants 
A2 and A3, the mean rate of strain and mean vorticity. By 
imposing the symmetry conditions, zero trace, and Caley- 
Hamilton relation for the a u tensor, and truncating at the 
third-order terms, the expression reduces to 

eij = ao[1 + ct(½ A 2 - -  2 ) ]  __  tz(aika.ik _ ½A26ti ) (32) 

With ~ = 3/4, the model reproduced well several sets of DNS 
results for homogeneous turbulence, although Jovanovir, Ya, 
and Durst (1992) reported very modest success in reproducing 
the DNS results for e+j components in a plane channel flows. 

Perhaps we should expect in the near future the use of the 
modeled differential transport equations for each component 
of the dissipation-rate tensor, as recently proposed by Tagawa 
et al. (1991). Alternatively, for more complex flows, the idea of 
jointly modeling the return-to-isotropy and stress dissipation 
rate, @o - co, as advocated by some authors (e.g., Lumley and 
Newman 1977), may come again into focus, in spite of the 
known fact that these two terms represent very different 
processes. 
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4.3.  P h y s i c a l  c o n s t r a i n t s  a n d  i n d u s t r i a l  s t a n d a r d s  

Much was said about various constraints imposed upon the 
models by exact mathematical derivation and physical 
arguments, many of which cannot be fulfilled by any of the 
current models. Yet most of the models reproduce acceptably 
well the experimental or DNS data for a considered class of 
flows. Either the constraints are not encountered in the 
considered flows, or deficiencies in various segments of the 
model compensate for each other. A typical example is the 
plane channel flow (and other thin shear flows) where most 
models reproduce well the mean-flow properties and second 
moments, but fail to reproduce the budget of individual stresses, 
and even of the kinetic energy. Figure 15 shows the predictions 
of the turbulent stresses for a plane channel flow at Re = 5600 
obtained by the recent model of Launder and Tselepidakis 
(1991) (denoted as LT) already described (but without the new 
reflection term), and by the model of Launder and Shima (1989) 
(denoted as LS). 

Also presented are the results obtained by a recent variant 
of the model tested by Hanjali6 and colleagues (Hanjalir, 
Jakirlir, and Had~i6 1993; Jakirli6, Hanjali6, and Durst 1993). 
This model (denoted as H J) employs the dissipation equation 
in the form of Equation 25 with C,a = 0.25, and models e u as 
described earlier by Equations 29 and 31, whereas the standard 
high-Re-number form of the linear model of @~j was adopted 
with coefficients taken as functions of A2, Aa, and Rez, i.e., 

C 1 = C "1- A1/2E 2, C 2 = 0.8A 1/2, 

C~' = min(A, 0.3) 

where 

C = 2.5AF1/4f, F = min(0.6, A 2 )  , 

c7'  = 1 - 0.7c ,  

:=minE( 7 10] 
These functions are purely empirical with a little physical 
justification. This cannot be avoided with the assumed linear 
form of the basic high-Re-number model of @+i- However, they 
are all expressed in terms of scalar parameters and are 
independent of the wall configuration. They also satisfy basic 
constraints relevant to near-wall flows such as the 2-D 
turbulence state and the limits of vanishing and very high Re,. 
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As seen, the LT and HJ models gave satisfactory 
reproduction of all stress components, withappropriate slopes 
and values (apart from a descrepancy in u~ very close to the 
wall). A visibly poorer agreement was obtained with the LS 
model. For illustration, the logarithmic velocity profiles for 
three Re numbers are also presented. The computed stress 
budget for a constant-pressure boundary layer, shown in Figure 
16, is in a reasonable agreement with the DNS results of Spalart 
(1988), apart from very close to the wall. A very similar 
agreement with the DNS data is obtained for a plane channel. 
It should be noted that the modeled O~j is identified with 
l-I~j = ~ j +  D~ (since the pressure diffusion is not modeled 
explicitly) and compared with the DNS results for l-l~j. 

In addition to a desired computational sturdiness, the model 
has shown a high degree of generality, reproducing also 
satisfactory several more complex 2-D and 3-D thin shear 
flows. Examples include flows with severe favorable (including 
the case with laminarization) and adverse pressure gradient, 
oscillating flow around a zero mean with rapid variation of the 
mean-flow velocity, as well as some 3-D shear-induced flows 
with zero and favorable stream-wise pressure gradient, as 
illustrated in Figures 17 to 20. It should be noted that the 
inclusion of the term C,,,~iu~(dUJSx~) (with C~4 ~ 2.4), which 
enhances the production of e by irrotational straining, as 
proposed in Hanjali6 and Launder (1980) (the approximation 
of the effect of the third term in Equation 21 for thin shear 
flows), contributed to the prediction of laminarization at the 
appropriate value of the acceleration parameter K = (v/U~) 
(dUe/dx) ~ 3.2 x 10 -6 and also improved the predictions of 
flows at adverse pressure gradient. Together with a number of 
examples reported by Launder and Shima (1989) and Shima 
(1991, 1993) with a similar type of model, the illustrations show 
that these and similar models display a considerable degree of 

generality and may be employed for industrial computations. 
In spite of the lack of verification in more complex 3-D flows, 
still-present ad hoc empiricism, and the inability to fulfill all 
mathematical and physical constraints, they can be regarded 
as less uncertain than the currently most frequently employed 
k-e or similar two-equation eddy-viscosity models. Of course, 
the use of more sophisticated, higher-order models, imple- 
mentation of multiscale concept and other new ideas discussed 
earlier as a basis on which the low-Re-number and wall vicinity 
modifications are built, may lead to less empiricism and higher 
generality, particularly if complex separating flows are to be 
predicted. Models of such universality, however, do not seem 
to be yet in the offing. 

5. Possible fu ture  directions 

5. I .  T u r b u l e n c e  s c a l e s  

Although the turbulence scales are primarily defined to 
characterize the turbulent mixing through the definition of 
eddy viscosity at a point in the flow, they are also utilized to 
model all superfluous terms in the transport equations for 
turbulence parameters. Since these terms represent physically 
different turbulence interactions that are known to occur at 
different rates, the use of a single time-and-length scale is one 
of the basic approximations pertinent to all single-scale models, 
the abandonment of which represents an unexploited source of 
refinements of the model. In addition to employing a separate 
scale for the low-Re-number region near the wall, as suggested 
by Durbin (1991, 1993) and implied by the RNG models of 
Yakhot and Orszag (1986), two other concepts deserve 

196 Int. J. Heat and Fluid Flow, Vol. 15, No. 3, June 1994 



Advanced turbulence closure methods: K. Hanjali6 

.5 ~_ ¢ ~ x  Bo'~ndlarlt layer  I 
r Re 0==670 

~, / ~ I,i~ues: m o d e l  l t d  I 

_ . . . . . . . . . . . .  

0. =.l.~ ~. .; :. ~_~ - - - e - - - ¢ - ~ - - -  "-  ~ ~ t * - ' 

_ : : : D ,  r - - e - - e - - - m -  - Etr 

_ s J l l i l l l l l l l  I I I  I I l i l i l i l t i ! l l l l  I I  l i  I I  l i l ~  

;i7 t .~ te t  ] 
1 Re 8=670 I 

% " £  . . . . . . . .  

CO " ~ . _  . . B . . . . i p - - -  B , -  - - ' B  ~ ~ "  - 

- .1  

i i i I i i i i I i I i t ] i i I I J i I i I ] I I I I I I I I I I i I ~ I 

0 10 20 30 40 ~,+ 50 60 70 80 // 

.04 . . . . . . .  

t- Be 0 = 6 7 0  ~ ~ ~ o - - ~  . . . .  I 4- " ,' ~-'~'- '~- / 

• 02 f,~t~,: 4r8 a'~"4"'"- ~ */'~ "x," %-'"~--}  

O .  r ~  " " ; " - - ~ : - - ~ -  . . . . . .  A ' - - - A - - - A ' - - - & ' -  ~ 

o ° ° ° - -  t 

_ . 0 4  I I I I I I I I I I J i , i , I i i i I I i i t i ! i I i i I i ~ i J I i i i i I 

.tO 

.05 

O. 

- . 0 5  

- .10 

- ,'x-~-Xx ~ bttdaet ] 
_ / x  "-<x x nea=e"~ I 
- ~ "  . ~ .  X X 

/X  ~ ~ ~ ,X_... ._K... . .a ¢ 

k ' ~ - - ~ - - - x . - _ x _ ~  ~__~ 

e e d ~ e ~ - e  • • • • ~ ~ 

t l l l l l l l l l l l i l l l l l l l l l l l l l r l l l l l l l l l l l  I 

10 20 30 40 y+ 50 60 70 80 

Figure 16 Budgets of turbulent stresses in a constant pressure turbulent boundary layer. Symbols: DNS (Spalart 1988); lines: 
computations (Hanjali6 and Jakirli6 unpublished) 
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attention: the split-spectrum multiple-scale concept and the 
tensorial-scale model. 

The split-spectrum multiple-scale concept. This concept, 
proposed by Hanjalir, Launder, and Schiestel (1980) and 
Schiestel (1983), offers an intriguing possibility to construct a 
model that employs two (or more) independently calculated 
turbulence time scales with which to characterize the dynamics 
of different turbulent interactions. The idea rests on the division 
of turbulence spectra into two parts that respond at different 
rates and in different ways to changes in the environment. As 
such, the concept may be regarded physically as an 
intermediate level of modeling between the single-point and 
two-point closure schemes, but computationally only margin- 

ally more laborious than single-point models. The spectrum is 
divided at the wave number, above which no significant 
mean-strain production occurs, i.e., the low wave number 
(production) region and the higher wave number (energy 
transfer and dissipation) region. Separate transport equations 
are to be modeled and solved for the Re-stress components (or 
for the turbulence energy in two-equation models) for each part 
of the wave number spectra. The transport equations are also 
solved for the energy transfer rate out of the production range 
and through the inertial subrange, the latter being assumed to 
be equal to the dissipation rate, e. 

The computational results of a number of notorious 
nonequilibrium homogeneous, free and wall thin shear flows 
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showed' significantly closer agreement with experiments in 
comparison with single-scale-model predictions. This encour- 
aging outcome was not pursued much further, perhaps because 
of the intimidating task of retesting a vast number of flows and 
tuning a number of new coefficients that inevitably appear as 
a consequence of the increased model diversity. Direct 
numerical simulation offers possibilities to get information on 
the terms in the budget of transport equations associated with 
each part of the spectrum for the adopted partitioning wave 
number(s) and to evaluate with more certainty the unknown 
coefficients. The idea is certainly appealing, and we may expect 
some further developments along these lines. 

Tensorial length scale in eddy-viscosity models. Another 
interesting idea, proposed many years ago (Monin, in Monin 
and Yaglom 1975), but not exploited much for obvious reasons, 
is the stress-strain relationship that employs a length scale in 
the form of a symmetric tensor of the second rank, l o (the scale 
tensor), namely, 

uiuj = 2/3ktSij - kl/2(likSki + l~kSu) (33) 

This approach produces a nonisotropic eddy viscosity, 
regarded by some researchers as unavoidable for more accurate 
computation of 3-D flows (see, e.g., Bradshaw 1987; Cousteix 
1986; Lakshminarayana 1986) for which the use of any model 
of order higher than the two-equation model is still formidably 
impractical. The obvious drawback is a need to define the 
ellipsoid of the length scales llj. A way to incorporate this idea 
into the currently popular models might be to keep the scalar 
length l = ka/2/e as the spherical average of l o and to introduce 
the deviatoric part of it, ?i j, which should account for the 
length-scale directional orientation, i.e., l o = I?o. The deviatoric 
can be specified by an algebraic relationship like that proposed 
by Naot et al. (see Wolfshtein et al. 1975): 

y,j = (1 - A)fu/3 + Au-~/(2k) (34) 

where A is a coefficient that can be evaluated on the basis of 
ratios of macroscales of the quasi-isotropic correlation 
functions (based on plane channel flow data Naot suggested to 
be 0.3 to 0.4). Close to a solid wall, the expression will produce 
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122 < 133 < 111, as expected. This approach requires, however, 
a mode to express the ratio u---~/k that calls for some kind of 
ASM model. The idea of a tensorial scale may, however, be 
easily incorporated into the full DSM or ASM. 

5.2. Non l i nea r  stress-strain re la t ionsh ip  

The recognized similarities between the mean turbulent flow of 
a Newtonian fluid and the laminar flow of viscoelastic fluids 
has frequently served in the past as an inspiration to extend 
the validity of simple models by the asymptotic expansion of 
the basic stress-strain relationship and inclusion of higher- 
order terms (e.g., Lumley 1978). Following that route in a 
consistent manner, and satisfying most of the mathematical 
constrains, Speziale (1987) extended the standard k-e (and k - L )  
model by adding two more terms into the stress-strain 
expression, which are quadratic in the mean-velocity 
gradients--analogous to the viscoelastic terms in the 
second-order model of a Rivlin-Ericsen fluid. Such a nonlinear 
eddy-viscosity model incorporates a trace of memory of the 

mean-flow deformation into the expression for the Reynolds 
stresses: 

uiu'----~j = 2 / 3 k f i j  k l /21S . . - ,j .-F Col2[(SimSraj  - S , , , ,S=,6i j /3  ) 

+ (J,j - g_,~,d3)] (35) 
where ~ij is the Oldroyd frame-indifferent derivative of Sij,  

dSi i 0S u d U~ d Uj 
J u  = ~ -  + Uk - -  - -  Ski - -  - -  Ski - -  (36) 

OXk OXk OXk 

and Co is an empirical coefficient to which a value of 1.68 
was assigned, associated with the adopted length scale 
I = C.k3/2 /e .  

In the words of Speziale (1987), his model is a special case 
of a much more complex nonlinear eddy-viscosity model 
derived by Yoshizawa using Kraichnan's DIA formalism. 
Numerical tests of the model produced acceptable predictions 
of normal stresses in a fully developed plane channel (though 
not very satisfactory in the near-wall region) and of the 
secondary flow induced by a difference of normal Re-stresses 
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in noncircular ducts (neither phenomena can be predicted with 
standard two-equation models). A substantial improvement of 
the prediction of the reattachment length of the recirculating 
zone behind a backward-facing step was also obtained. 

Although this nonlinear model extends the range of validity 
of the standard models while maintaining most of their popular 
features (satisfying at the same time most mathematical 
constraints), like its linear antecedent, it violates the principle 
of physical coherence, since it expresses turbulence properties 
(here Re-stresses) as being directly proportional to the 
mean-flow properties (mean rate of strain). As such, the model 
cannot remedy some noted failures of the eddy-viscosity model, 
such as the noncoincidence of the positions of zero shear stress 
and mean rate of strain in asymmetric flows (a fact which may 
sound trivial from a practical point of view, but which is a 
sensitive indicator of a model's ability to mimic turbulent 
transport), not to mention local regions close to separation and 
reattachment points, corners and other singularities, and flows 
with history effects. 

6. Concluding remarks 

In spite of all the research efforts and substantial progress in 
developing more general simulation models, two-equation 
models still remain the most widely used fast engineering 
methods for computing complex turbulent flows. In compar- 
ison with second-order Re-stress models, they demand a more 
modest computational effort--an advantage that becomes 
progressively important in complex flows (three-dimensional- 
ity, irregular flow boundaries, multiphase flows, chemical 
reactions, etc.). Various remedies, designed to account for 
"extra effects," may improve predictions of complex flows, if 
employed knowledgeably. 

There is, however, an evident disparity between the efforts 
on modeling refinements on the one hand and the use of models 
for calculation of complex flows on the other: very few 
industrial users take advantage of reported improve- 
ments--they seem to be generally satisfied with standard 
models with simple wall functions. Is it a question of distrust 
or insufficient understanding of the whole affair that leads to 
a blind use of whatever the simplest models offer? 

Second-order closure models are still burdened with a high 
degree of uncertainty in modeling higher-order correlations due 
to a lack of sufficient knowledge of their physics. However, 
most model creators believe that the second-order closure 
models will be more in use in the future and that one can expect 
increasing efforts directed towards their refinement and 
generalization. Some new developments, discussed earlier, 
sound very promising, and a breakthrough may already be in 
the offing. 

The successes in the development of modeling and 
computation techniques over the past 25 years have attracted 
many users among both the scientific and industrial 
communities. Some users even believe that they have at their 
disposal a tool powerful enough to calculate any complex flow. 
But, to quote Rotta's warning (1984), " . . .  It should never be 
forgotten that the second order closure principles means a 
drastic simplification in the description of the turbulent motion. 
Very complex cases like the flow field around an arbitrarily 
shaped body. . ,  will hardly be accessible by such methods. A 
really universal turbulence model is a dream and will be a 
dream possibly for ever." 
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Notes 

1. As compared with direct numerical simulation (DNS) or large-eddy 
simulation (LES), which take tens or hundreds of hours of 
supercomputer time. 
2. Lumley (1978) argued that the pressure diffusion is typically about 
20% of the velocity diffusion. 
3. Recent analytical derivation of single-point models on the basis of 
the Renormalization group theory (RNG) suggests an increase of all 
diffusion coefficients in the transport equations by about 35%. 
4. More recently, Smith and Reynolds (1992) showed that the RNG 
theory does not yield a production term of the form used in the 
standard model (Equation 20). 
5. In fact, the Kolmogorov time scale has been indirectly invoked by 
most models that employed the turbulence Re number to modify the 
equations in the near-wall region, since Re~/2 = k/xfvee is in fact the 
ratio of the energy-containing and dissipative time scales. 
6. Presumably, this is what the authors meant, since in the limit of 
laminar flow they would have v t = v # 0. 
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